
Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

1

VSM’s

SOMASHEKHAR R KOTHIWALE INSTITUTE OF

TECHNOLOGY, NIPANI

DEPT. OF ELECTRONICS & COMMUNICATION
ENGINEERING.

EMBEDDED CONTROLLER LABORATORY [17ECL6]
LAB MANUAL

2019-20

Faculty Incharge

Prof. Mallikarjun G.Ganachari

Asst. Prof. ECE. Dept.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

2

CONTENTS PAGE.NO

1. INTRODUCTIONTOARMCORTEXM3PROCESSOR 4
1.1 Introduction 4

1.2 Background ofARMarchitecture 5

1.3 Architectureversions 5

1.4 InstructionSetDevelopment 6

1.5 Advantages of CortexM3processors 7

1.6 Applications of ARM CortexM3processors 7

1.7 The Cortex-M3 Processorversus

Cortex-M3-BasedMicroControllers 8

2. INTRODUCTION TOMICROCONTROLLERLPC1768 9
2.1 ArchitecturalOverview 9

2.2 Block DiagramofLPC1768FBD100 10

2.3 A brief description oftheblocks 11

3. TECHNICALSPECIFICATIONS 15
3.1 SpecificationsofLPC1768 15

3.2 Specifications oftheALS-SDA-ARMCTXM3-06 17

4. PLACEMENTDIAGRAMS 18

5. SOFTWARE/FIRMWARE 19
5.1 Keil uvision4IDEInstallation 19

5.2 Settings to be done atConfigurationwizard 21

Of System_LPC17xx.c file

5.3 Flash magic6.01installations 23

5.4 Project Creation in Keiluvision4IDE 24

5.5 Settings to be done in KEILV4 forexecuting

Cprograms 28

6. TEST SET UP &TESTPROCEDURE 30
6.1 Test setuprequirements 30

6.2 Testsetup 30

6.3 Flashprogramming 30

7. HARDWAREDETAILS 31
7.1 ConnectorDetails 31

7.2 D-subConnectorDetails 33

7.3 PowermateDetails 33

7.4 JumperDetails 34

7.5 TestPoints 34

7.6 SwitchDetails 34

7.7 PotDetails 34

7.8 ICDetails 35

7.9 ReliamateDetails 35

8. CABLEDETAILS 36
8.1 Applyingpower 36

8.2 Serialcommunicatio 36

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

3

9. ONBOARDINTERFACES 37

9.1 UART0interfaceBlock 37

9.2 AlphanumericLCD 38

9.3 Relay, Buzzer and MotorcontrolBlock 39

9.4 InternalADCinterface 40

9.5 ResetCircuit 41

9.6 ISPCircuit 41

9.7 Serialperipheralinterface 42

9.8 I2cNVROMinterface 42

9.9 4x4 KeyMatrixinterface 43

9.10 PWMinterface 44

9.11 Externalinterrupt 44

9.12 Seven segmentDisplayinterface 44

9.13 ExternalDAC 45

9.14 SpareConnector 46

10. DEMO PROGRAMS IN KEILUVISION4IDE 47

10.1 TestUART0Test 47

10.2 TestDCMotor 47

A) DC Motor Speed control using onchipPWM 47

B) DC MotordirectionControl 48

10.3 TestStepperMotor 48

10.4 TestInternalADC 48

10.5 TestDAC0800 48

A) Sinewave 48

B) Squarewave 48

C) Trianglewave 49

10.6 TestKeypad 49

10.7 Test PulseWidthModulation(PWM) 49

10.8 TestExternalInterrupt 49

10.9 Test 7segmentDisplay 49

10.10 To Control Relay\Buzzer\LEDthroughSwitch 50

10.11 SPITemperatureSensor 50

11. DEMOASSEMBLYPROGRAMS 50

11.1 ALP to multiply two 16 bitbinarynumbers 50

11.2 ALPtofindthesumoffirst10integernumbers 51

12. TROUBLESHOOTING 52

13. QUICKREFERENCE 52

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

4

1. INTRODUCTION TO ARM Cortex M3PROCESSOR

1.1 Introduction

The ARM Cortex-M3 is a general purpose 32-bit microprocessor, which offers high performance

and very low power consumption. The Cortex-M3 offers many new features, including a Thumb-

2 instruction set, low interrupt latency, hardware divide, interruptible/continuable multiple load

and store instructions, automatic state save and restore for interrupts, tightly integrated

interrupt controller with Wake-up Interrupt Controller and multiple core buses capable of

simultaneous accesses.

Pipeline techniques are employed so that all parts of the processing and memory systems can

operate continuously. Typically, while one instruction is being executed, its successor is being

decoded, and a third instruction is being fetched from memory.

The processor has a Harvard architecture, which means that it has a separate instruction bus

and data bus. This allows instructions and data accesses to take place at the same time, and as

a result of this, the performance of the processor increases because data accesses do not affect

the instruction pipeline. This feature results in multiple bus interfaces on Cortex-M3, each with

optimized usage and the ability to be used simultaneously. However, the instruction and data

buses share the same memory space (a unified memory system). In other words, you cannot

get 8 GB of memory space just because you have separate bus interfaces.

A simplified block diagram of the Cortex-m3 architecture is shown below

It is worthwhile highlighting that the Cortex-M3 processor is not the first ARM processor to be

used to create generic micro controllers. The venerable ARM7 processor has been very

successful in this market, The Cortex-M3 processor builds on the success of the ARM7processor

to deliver devices that are significantly easier to program and debug and yet deliver a higher

processingcapability.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

5

1.2 Background of ARMarchitecture

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple

Computer,Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6

processor family, and VLSI became the initial licensee. Subsequently, additional companies,

including Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor

designs, extending the applications of ARM processors into mobile phones, computer hard

disks, personal digital assistants (PDAs), home entertainment systems, and many other

consumer products.

Nowadays, ARM partners ship in excess of 2 billion ARM processors each year. Unlike many

semiconductor companies, ARM does not manufacture processors or sell the chips directly.

Instead, ARM licenses the processor designs to business partners, including a majority of the

world‟s leading semiconductor companies. Based on the ARM low-cost and power-efficient

processor designs, these partners create their processors, micro controllers, and system-on-

chip solutions. This business model is commonly called intellectual property (IP) licensing.

1.3 Architectureversions

Overtheyears,ARMhascontinuedtodevelopnewprocessorsandsystemblocks.Theseinclude the

popular ARM7TDMI processor and, more recently, the ARM1176TZ (F)-S processor, which is

used in high-end applications such as smart phones. The evolution of features and

enhancements to the processors over time has led to successive versions of the ARM

architecture. Note that architecture version numbers are independent from processor names.

For example, the ARM7TDMI processor is based on the ARMv4T architecture (the T is forThumb

instruction modesupport).

The ARMv5E architecture was introduced with the ARM9E processor families, including the

ARM926E-S and ARM946E-S processors. This architecture added “Enhanced” Digital Signal

Processing (DSP) instructions for multimedia applications. With the arrival of the ARM11

processor family, the architecture was extended to the ARMv6. New features in this architecture

included memory system features and Single Instruction–Multiple Data (SIMD) instructions.

Processors based on the ARMv6 architecture include the ARM1136J (F)-S, the ARM1156T2 (F)-

S, and the ARM1176JZ (F)-S.

Over the past several years, ARM extended its product portfolio by diversifying its CPU

development,whichresultedinthearchitectureversion7orv7.Inthisversion,thearchitecture design

is divided into threeprofiles:

 The A profile is designed for high-performance open applicationplatforms.

 The R profile is designed for high-end embedded systems in which real-time

performance isneeded.

 TheMprofileisdesignedfordeeplyembeddedmicrocontroller-typesystems. Bit

more details on theseprofiles

A Profile (ARMv7-A): Application processors which are designed to handle complex

applications such as high-end embedded operating systems (OSs) (e.g., Symbian, Linux, and

Windows Embedded). These processors requiring the highest processing power, virtual memory

system support with memory management units (MMUs), and, optionally, enhanced Java

support and a secure program execution environment. Example products include high-end

mobile phones and electronic wallets for financial transactions.

RProfile(ARMv7-R):Real-time,high-performanceprocessorstargetedprimarilyatthehigher end

of the real-time market, those applications, such as high-end breaking systems and hard drive

controllers.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

6

M Profile (ARMv7-M): Processors targeting low-cost applications in which processing

efficiency is important and cost, power consumption, low interrupt latency, and ease of use are

critical,aswellasindustrialcontrolapplications,includingreal-timecontrolsystems.TheCortex

processor families are the first products developed on architecture v7, and the Cortex- M3

processor is based on one profile of the v7 architecture, called ARM v7-M, an architecture

specification for micro controllerproducts.

Below figure shows the development stages of ARM versions

1.4 Instruction SetDevelopment

Enhancement and extension of instruction sets used by the ARM processors has been one ofthe

key driving forces of the architecture‟s evolution. Historically (since ARM7TDMI), two different

instruction sets are supported on the ARM processor: the ARM instructions that are 32 bits and

Thumb instructions that are 16 bits. During program execution, the processor can be

dynamically switched between the ARM state and the Thumb state to use either one of the

instructionsets.TheThumbinstructionsetprovidesonlyasubsetofthe ARMinstructions,butit can

provide higher code density. It is useful for products with tight memoryrequirements.

The Thumb-2 Technology and Instruction Set Architecture

The Thumb-2 technology extended the Thumb Instruction Set Architecture (ISA) into a highly

efficient and powerful instruction set that delivers significant benefits in terms of ease of use,

code size, and performance. The extended instruction set in Thumb-2 is a super set of the

previous 16-bit Thumb instruction set, with additional 16-bit instructions alongside 32-bit

instructions. It allows more complex operations to be carried out in the Thumb state, thus

allowing higher efficiency by reducing the number of states switching between ARM state and

Thumb state.

Focused on small memory system devices such as micro controllers and reducing the size ofthe

processor, the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) instruction set.

Instead of using ARM instructions for some operations, as in traditional ARM processors, it uses

the Thumb-2 instruction set for all operations. As a result, the Cortex-M3 processor is not

backward compatible with traditional ARMprocessors.

Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit Thumb instructions,

including all 16-bit Thumb instructions supported on ARM7 family processors, making

application porting easy. With support for both 16-bit and 32-bit instructions in the Thumb-2

instruction set, there is no need to switch the processor between Thumb state (16-bit

instructions) and ARM state (32-bit instructions). For example, in ARM7 or ARM9 family

processors, you might need to switchto ARM state if you want to carry out complex calculations

or a large number of conditional operations and good performance is needed, whereas in the

Cortex-M3 processor, you can mix 32-bit instructions with 16-bit instructions without switching

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

7

state, getting high code density and high performance with no extracomplexity.The Thumb-2

instruction set is a very important feature of the ARMv7 architecture. Compared with the

instructions supported on ARM7 family processors (ARMv4T architecture), the Cortex- M3

processor instruction set has a large number of new features. For the first time, hardware

divide instruction is available on an ARM processor, and a number of multiply instructions are

also available on the Cortex-M3 processor to improve data-crunching performance. The Cortex-

M3 processor also supports unaligned data accesses, a feature previously available only inhigh-

end processors.

1.5 Advantages of Cortex M3processors

The Cortex-M3 addresses the requirements for the 32-bit embedded processor market in the

following ways:

Greater performance efficiency: allowing more work to be done without increasing the

frequency or power requirements

Low power consumption: enabling longer battery life, especially critical in portable products

including wireless networking applications

Enhanced determinism: guaranteeing that critical tasks and interrupts are serviced as quickly

as possible and in a known number of cycles

Improved code density: ensuring that code fits in even the smallest memory footprints

Easeofuse:providingeasierprogramminganddebuggingforthegrowingnumberof8-bitand 16-bit

users migrating to 32bits

Lower cost solutions: reducing 32-bit-based system costs close to those of legacy 8-bit and

16-bit devices and enabling low-end, 32-bit micro controllers to be priced at less than US$1 for

the first time

Wide choice of development tools: from low-cost or free compilers to full-featured

development suites from many development tool vendors

Cost savings can be achieved by improving the amount of code reuse across all systems.

Because Cortex-M3 processor-based micro controllers can be easily programmed using the C

language and are based on a well-established architecture, application code can be ported and

reused easily, and reducing development time and testing costs.

1.6 Applications of Cortex M3processors

Low-cost micro controllers: The Cortex-M3 processor is ideally suited for low-cost micro

controllers, which are commonly used in consumer products, from toys to electrical appliances.

It is a highly competitive market due to the many well-known 8-bit and 16-bit micro controller

products on the market. Its lower power, high performance, and ease-of-use advantages enable

embedded developers to migrate to 32-bit systems and develop products with the ARM

architecture.

Automotive: Another ideal application for the Cortex-M3 processor is in the automotive

industry. The Cortex-M3 processor has very high-performance efficiency and low interrupt

latency, allowing it to be used in real-time systems. The Cortex-M3 processor supports up to

240 external vectored interrupts, with a built-in interrupt controller with nested interrupt

supports and an optional MPU, making it ideal for highly integrated and cost-sensitive

automotive applications.

Data communications: The processor‟s low power and high efficiency, coupled with

instructions in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for many

communications applications, such as Bluetooth and ZigBee.

Industrial control: In industrial control applications, simplicity, fast response, and reliability

are key factors. Again, the Cortex-M3 processors interrupt feature, low interrupt latency, and

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

8

enhanced fault-handling features make it a strong candidate in this area.Consumer products:

In many consumer products, a high-performance microprocessor (or several of them) is used.

The Cortex-M3 processor, being a small processor, is highly efficient and low in power and

supports an MPU enabling complex software to execute while providing robust memory

protection.

1.7 TheCortex-M3ProcessorversusCortex-M3-BasedMicro

Controllers

The Cortex-M3 processor is the central processing unit (CPU) of a micro controller chip. In

addition, a number of other components are required for the whole Cortex-M3 processor-based

micro controller. After chip manufacturers license the Cortex-M3 processor, they can put the

Cortex-M3 processor in their silicon designs, adding memory, peripherals, input/output (I/O),

and other features. Cortex-M3 processor-based chips from different manufacturers will have

different memory sizes, types, peripherals, and features.

2. INTRODUCTION TO MICRO CONTROLLERLPC1768

2.1 ArchitecturalOverview

The LPC1768FBD100 is an ARM Cortex-M3 based micro controller for embedded applications

requiring a high level of integration and low power dissipation. The ARM Cortex-M3 is a next

generation core that offers system enhancements such as modernized debug features and a

higher level of support block integration. LPC1768 operate up to 100 MHz CPU frequency.

The peripheral complement of the LPC1768 includes up to 512 kilo bytes of flash memory, up to

64KB of data memory, Ethernet MAC, a USB interface that can be configured as either Host,

Device, or OTG, 8 channel general purpose DMA controller, 4 UARTs, 2 CAN channels, 2 SSP

controllers, SPI interface, 3 I2C interfaces, 2-input plus 2-output I2S interface, 8 channel 12-bit

ADC, 10-bit DAC, motor control PWM, Quadrature Encoder interface, 4 general purpose timers,

6-output general purpose PWM, ultra-low power RTC with separate battery supply, and up to 70

general purpose I/O pins.

The LPC1768 use a multi layer AHB(Advanced High Performance Bus) matrix to connect the

ARM Cortex-M3 buses and other bus masters to peripherals in a flexible manner that optimizes

performance by allowing peripherals that are on different slaves ports of the matrix to be

accessed simultaneously by different bus masters.

On-chip flash memory system

The LPC1768 contains up to 512 KB of on-chip flash memory. A flash memory accelerator

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

9

maximizes performance for use with the two fast AHB Lite buses. This memory may be used for

both code and data storage. Programming of the flash memory may be accomplished in several

ways. It may be programmed In System via the serial port. The application program may also

erase and/or program the flash while the application is running, allowing a great degree of

flexibility for data storage field firmware upgrades, etc.

On-chip Static RAM

The LPC1768 contains up to 64 KB of on-chip static RAM memory. Up to 32 KB of SRAM,

accessible by the CPU and all three DMA controllers are on a higher-speed bus. Devices

containing more than 32 KB SRAM have two additional 16 KB SRAM blocks, each situated on

separate slave ports on the AHB multilayer matrix. This architecture allows the possibility for

CPU and DMA accesses to be separated in such a way that there are few or no delays for the

bus masters.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

10

2.2 Block Diagram ofLPC1768FBD10

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

11

2.3 A brief description of theblocks:

Nested vector interrupt controller

The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low

interrupt latency and efficient processing of late arriving interrupts.

Features

 Controls system exceptions and peripheralinterrupts

 In the LPC1768, the NVIC supports 33 vectoredinterrupts

 32 programmable interrupt priority levels, with hardware priority levelmasking
 Relocatable vectortable

 Non-Maskable Interrupt(NMI)

 Software interruptgeneration

Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several

interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be

programmed to generate an interrupt on a rising edge, a falling edge, or both.

General purpose DMA controller

The GPDMA (General Purpose Direct Memory Access) is an AMBA AHB (Advanced Micro

controller Bus Architecture Advance high performance bus) compliant peripheral allowing

selected peripherals to have DMA support.

TheGPDMAenablesperipheral-to-memory,memory-to-peripheral,peripheral-to-peripheral,and

memory-to-memory transactions. The source and destination areas can each be either a

memory region or a peripheral, and can be accessed through the AHB master. The GPDMA

controller allows data transfers between the USB and Ethernet controllers and the various on-

chip SRAM areas. The supported APB peripherals are SSP0/1, all UARTs, the I2S-bus interface,

theADC,andtheDAC.TwomatchsignalsforeachtimercanbeusedtotriggerDMAtransfers.

Function Configuration block

Theselectedpinsofthemicrocontrollertohavemorethanonefunction.Configurationregisters control

the multiplexers to allow connection between the pin and the on-chip peripherals.

Peripheralsshouldbeconnectedtotheappropriatepinspriortobeingactivatedandpriortoany related

interrupt(s) beingenabled.

Activity of any enabled peripheral function that is not mapped to a related pin should be

considered undefined. Most pins can also be configured as open-drain outputs or to have a pull-

up, pull-down, or no resistorenabled.

Fast general purpose parallelI/O

Device pins that are not connected to a specific peripheral function are controlled by the GPIO

registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow

setting or clearing any number of outputs simultaneously. The value of the output register may

be read back as well as the current state of the port pins.

USB interface

TheUniversalSerialBus(USB)isa4-wirebusthatsupportscommunicationbetweenahostand

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

12

oneormore(upto127)peripherals.ThehostcontrollerallocatestheUSBbandwidthto

attached devices through a token-based protocol. The bus supports hot plugging and dynamic

configuration of the devices. All transactions are initiated by the host controller.

The USB interface includes a device, Host, and OTG controller with on-chip PHY for device and

Host functions. The OTG switching protocol is supported through the use of an external

controller.

USB device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists

of a register interface, serial interface engine, endpoint buffer memory, and a DMA controller.

The serial interface engine decodes the USB data stream and writes data to the appropriate

endpoint buffer. The status of a completed USB transfer or error condition is indicated viastatus

registers. An interrupt is also generated if enabled. When enabled, the DMA controller transfers

data between the endpoint buffer and the on-chipSRAM.

12-bit ADC

The LPC1768 contain a single 12-bit successive approximation ADC with eight channels and

DMA support.

10-bit DAC

The DAC allows to generate a variable analog output. The maximum output value of the DAC is

VREFP.

UART's

The LPC1768 contain four UART's. In addition to standard transmit and receive data lines,

UART1 also provides a full modem control handshake interface and support for RS-485/9-bit

mode allowing both software address detection and automatic address detection using 9-bit

mode.

The UART's include a fractional baud rate generator. Standard baud rates such as 115200 Baud

can be achieved with any crystal frequency above 2 MHz

SPI serial I/O controller

The LPC1768 contain one SPI controller. SPI is a full duplex serial interface designed to handle

multiple masters and slaves connected to a given bus. Only a single master and a single slave

can communicate on the interface during a given data transfer. During a data transfer the

master always sends 8 bits to 16 bits of data to the slave, and the slave always sends 8 bits to

16 bits of data to the master.

SSP serial I/O controller

The LPC1768 contain two SSP controllers. The SSP controller is capable of operation on a SPI,

4-wire SSI, or Micro wire bus. It can interact with multiple masters and slaves on the bus. Only

a single master and a single slave can communicate on the bus during a given data transfer.

The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the

master to the slave and from the slave to the master. In practice, often only one of these data

flows carries meaningfuldata.

I2C-bus serial I/O controllers

The LPC1768 each contain three I2C-bus controllers. The I2C-bus is bidirectional for inter-IC

control using only two wires: a Serial Clock line (SCL) and a Serial DAta line (SDA). Each device

is recognized by a unique address and can operate as either a receiver-only device or a

transmitter with the capability to both receive and send information (such as memory).

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

13

Transmitters and/or receivers can operate in either master or slave mode, depending on

whether the chip has to initiate a data transfer or is only addressed. The I2C is a multi-master

bus and can be controlled by more than one bus master connected to it.General purpose 32-bit

timers/external event counters

The LPC1768 include four 32-bit timer/counters. The timer/counter is designed to count cycles

of the system derived clock or an externally-supplied clock. It can optionally generate

interrupts, generate timed DMA requests, or perform other actions at specified timer values,

based on four match registers. Each timer/counter also includes two capture inputs to trap the

timer value when an input signal transitions, optionally generating an interrupt.

Pulse width modulator

The PWM is based on the standard Timer block and inherits all of its features, although only the

PWM function is pinned out on the LPC1768. The Timer is designed to count cycles of the

system derived clock and optionally switch pins, generate interrupts or perform other actions

when specified timer values occur, based on seven match registers. The PWM function is in

addition to these features, and is based on match register events.

Watchdog timer

The purpose of the watchdog is to reset the micro controller within a reasonable amount oftime

if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the

userprogramfailsto„feed‟(orreload)thewatchdogwithinapredeterminedamountoftime.

RTC and backup registers

The RTC is a set of counters for measuring time when system power is on, and optionally when

it is off. The RTC on the LPC1768 is designed to have extremely low power consumption, i.e.

less than 1 uA. The RTC will typically run from the main chip power supply, conserving battery

power while the rest of the device is powered up. When operating from a battery, the RTC will

continue working down to 2.1 V. Battery power can be provided from a standard 3 V Lithium

button cell.

An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion of the

RTC, moving most of the power consumption out of the time counting function.

Clocking and Power Control

Crystal oscillators

The LPC1768 include three independent oscillators. These are the main oscillator, the IRC

oscillator, and the RTC oscillator. Each oscillator can be used for more than one purpose as

required in a particular application. Any of the three clock sources can be chosen by software to

drive the main PLL and ultimately the CPU.

Following reset, the LPC1768 will operate from the Internal RC oscillator until switched by

software. This allows systems to operate without any external crystal and the boot loader code

to operate at a known frequency.

Power control

The LPC1768 support a variety of power control features. There are four special modes of

processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep

power-down mode. The CPU clock rate may also be controlled as needed by changing clock

sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a

trade-off of power versus processing speed based on application requirements. In addition,

Peripheral Power Control allows shutting down the clocks to individual on-chip peripherals,

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

14

allowing fine tuning of power consumption by eliminating all dynamic power use in any

peripherals that are not required for the application. Each of the peripherals has its own clock

divider which provides even better power control.

Integrated PMU (Power Management Unit) automatically adjust internal regulators to minimize

power consumption during Sleep, Deep sleep, Power-down, and Deep power- down modes.The

LPC1768 also implement a separate power domain to allow turning off power to the bulk of the

device while maintaining operation of the RTC and a small set of registers for storing data during

any of the power-down modes.

Clock generation block diagram for LPC1768 is shown below

System Control

Reset

Reset has four sources on the LPC1768: the RESET pin, the Watchdog reset, power-on reset

(POR),andtheBrown-OutDetection(BOD)circuit.TheRESETpinisaSchmitttriggerinputpin. Assertion

of chip Reset by any source, once the operating voltage attains a usable level, causes the

RSTOUT pin to go LOW. Once reset is de-asserted, or, in case of a BOD- triggered reset, once

the voltage rises above the BOD threshold, the RSTOUT pin goes HIGH. In other words RSTOUT

is high when the controller is in its activestate.

Emulation and debugging

Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace

functions are supported in addition to a standard JTAG debug and parallel trace functions. The

ARM Cortex-M3 is configured to support up to eight breakpoints and four watch points.

Note: For further details on Controller blocks refer the User manual of LPC176x/5x – UM10360

available at www.nxp.com

http://www.nxp.com/

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

15

3. TECHNICAL SPECIFICATIONS ofLPC1768

3.1 Specifications ofLPC1768:

 ARM Cortex-M3 processor runs up to 100 MHzfrequency.

 ARM Cortex-M3 built-in Nested Vectored Interrupt Controller(NVIC).

 Up to 512kB on-chip flash program memory with In-System Programming (ISP) and In-

Application Programming (IAP) capabilities. The combination of an enhanced flash

memory accelerator and location of the flash memory on the CPU local code/data bus

provides high code performance fromflash.

 Up to 64kB on-chip SRAMincludes:

- Up to 32kB of SRAM on the CPU with local code/data bus for high-performance CPU

access.

- Up to two 16kB SRAM blocks with separate access paths for higher throughput. These

SRAM blocks may be used for Ethernet, USB, and DMA memory, as well as for general

purpose instruction and datastorage.

 Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer matrix

that can be used with the SSP, I2S, UART, the Analog-to-Digital and Digital-to-Analog

converterperipherals,timermatchsignals,GPIO,andformemory-to-memorytransfers.

 Serialinterfaces:

- Ethernet MAC with RMII interface and dedicated DMA controller.

- USB 2.0 full-speed controller that can be configured for either device, Host, or OTG

operation with an on-chip PHY for device and Host functions and a dedicated DMA

controller.

- Four UART's with fractional baud rate generation, internal FIFO, IrDA, and DMA

support. One UART has modem control I/O and RS-485/EIA-485support.

- Two-channel CANcontroller.

- Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces can

be used with the GPDMAcontroller.

- SPI controller with synchronous, serial, full duplex communication and programmable

data length. SPI is included as a legacy peripheral and can be used instead ofSSP0.

- Three enhanced I2C-bus interfaces, one with an open-drain output supporting the full

I2C specification and Fast mode plus with data rates of 1Mbit/s, two with standard port

pins. Enhancements include multiple address recognition and monitormode.

- I2S (Inter-IC Sound) interface for digital audio input or output, with fractional rate

control. The I2S interface can be used with the GPDMA. The I2S interface supports 3-

wire data transmit and receive or 4-wire combined transmit and receive connections,

as well as master clockoutput.

 Otherperipherals:

- 70 General Purpose I/O (GPIO) pins with configurable pull-up/down resistors, open

drain mode, and repeater mode. All GPIOs are located on an AHB bus for fast access,

and support Cortex-M3 bit-banding. GPIOs can be accessed by the General Purpose DMA

Controller. Any pin of ports 0 and 2 can be used to generate aninterrupt.

- 12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins,

conversion rates up to 200 kHz, and multiple result registers. The 12-bit ADC can be

used with the GPDMAcontroller.

- 10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA

support.

- Four general purpose timers/counters, with a total of eight capture inputs and ten

compare outputs. Each timer block has an external count input. Specific timer events

can be selected to generate DMArequests.

- One motor control PWM with support for three-phase motorcontrol.

- Quadrature encoder interface that can monitor one external quadratureencoder.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

16

- One standard PWM/timer block with external countinput.

- Real-Time Clock (RTC) with a separate power domain. The RTC is clocked by a

dedicated RTC oscillator. The RTC block includes 20 bytes of battery-powered backup

registers, allowing system status to be stored when the rest of the chip is poweredoff.

Battery power can be supplied from a standard 3 V Lithium button cell. The RTC will

continue working when the battery voltage drops to as low as 2.1 V. An RTC interrupt

can wake up the CPU from any reduced powermode.

- Watchdog Timer (WDT). The WDT can be clocked from the internal RC oscillator, the

RTC oscillator, or the APBclock.

- Cortex-M3 system tick timer, including an external clock input option.

- Repetitive interrupt timer provides programmable and repeating timed interrupts.

 Standard JTAG test/debug interface as well as Serial Wire Debug and Serial Wire Trace

Portoptions.

 Emulation trace module supports real-timetrace.

 Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deeppower-down.

 Single3.3Vpowersupply(2.4Vto3.6V).Temperaturerangeof-40°Cto85 °C.

 Fourexternalinterruptinputsconfigurableasedge/levelsensitive.AllpinsonPORT0and PORT2

can be used as edge sensitive interruptsources.

 Non Maskable Interrupt (NMI)input.

 Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock,CPU

clock, or the USBclock.

 The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from

any priority interrupt that can occur while the clocks are stopped in deep sleep, Power-

down, and Deep power-downmodes

 Processor wake-up from Power-down mode via any interrupt able to operate during

Power-down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet

wake-up interrupt, CAN bus activity, PORT0/2 pin interrupt, andNMI).

 Each peripheral has its own clock divider for further powersavings.

 Brownout detect with separate threshold for interrupt and forcedreset.

 On-chip Power-On Reset(POR).

 On-chip crystal oscillator with an operating range of 1 MHz to 25MHz.

 4 MHz internal RC oscillator trimmed to 1% accuracy that can optionally be used as a

systemclock.

 Anon-chipPLLallows CPUoperationuptothemaximum CPUratewithouttheneedfora high-

frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the

RTCoscillator.

 A second, dedicated PLL may be used for the USB interface in order to allow added

flexibility for the Main PLLsettings.

 Versatile pin function selection feature allows many possibilities for using on-chip

peripheralfunctions.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

17

3.2 SPECIFICATIONS OFALS-SDA-ARMCTXM3-06

 LPC1768 is ARM Cortex M3 based micro controllerwith

 512KB flash memory and 64KB SRAM In-System Programming (ISP) and In-

Application Programming (IAP)capabilities.

 Single 3.3 V power supply (2.4 V to 3.6V).

 70 General Purpose I/O (GPIO) pins with configurable pull-up/down resistors,

open drain mode, and repeatermode.

 12-bit Analog-to-Digital Converter (ADC) and up to 8 analogchannels.

 10-bit Digital-to-Analog Converter (DAC) with dedicated conversiontimer.

 Four general purpose timers/counters, with a total of eight capture inputs andten

compareoutputs.

 Four UART's with fractional baud rate generation, internal FIFO,IrDA.

 SPI controller with synchronous, serial, full duplexcommunication.

 Three enhanced I2C-businterfaces

 Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-

down.

 Real-Time Clock (RTC) with a separate powerdomain.

 Standard JTAG test/debug interface as well as Serial WireDebug.

 Four external interrupt inputs configurable as edge/levelsensitive.

 12MHz Crystal allows easy communicationsetup

 Oneonboardvoltageregulatorforgenerating3.3V.InputtothiswillbefromExternal

+5V DC Power supply through a 9-pin DSUB connector

 Piggy Back module containing LPC1768controller

 Standard JTAG connector with ARM 2×10 pin layout for programming/debugging with

ARM-JTAG

 Reset push-button for resetting thecontroller

 One RS232 interface circuit with 9 pin DSUB connector: this is used by the Boot loader

program, to program LPC1768 Flash memory without externalProgrammer

 DC motor interface with direction and speedcontrol

 Stepper motor interface with direction and speedcontrol

 16×2 alphanumeric LCDDisplay

 On chip ADC interface circuit usingAD0.5(P1.31)

 8-bit DACinterface

 4x4 Key-Matrix connected to the port lines of thecontroller

 One External interrupt circuit with LEDindication

 Two-digit multiplexed 7-segment displayinterface

 Interface circuit for on board Buzzer, Relay and Led indication controlled through push

button.

 SPI Interface: 2 channel ADC IC with POT and Temperaturesensor

 I2C Interface: NVROMIC

 Standard 26-pin FRC connectors to connect to on-board interface or some of ALS

standard ExternalInterfaces.

 A number of software examples in „C-language‟ to illustrate the functioning of the

interfaces. The software examples are compiled using an evaluation version of KEIL4 „C‟

compiler forARM.

 Compact elegant plasticenclosure

 Optional USB to Serial interface (RS232)cable.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

18

4. PLACEMENTDIAGRAM

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

19

5. SOFTWARE/FIRMWARE

5.1 Keil uvision4 IDEInstallation:

 Installation of keiluVision4 asfollows.

 Go to Software folder in the CD and run mdk474.exefile.

 A welcome window will appear. Click next onit

 A license window will appear. Clicknext

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

20

 Create a folder Keil4 at C drive to installsoftware

 Mention customer information against the tabsappear

 After clicking next a setup status willappear

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

21

 Click next andfinish

5.2 Settings to be done at configuration wizard of system_LPC17xx.cfile

 Beforeconfiguringtheclockregistersstudytheblockdiagramwhichisdescribedinthe

Clocking and power control in chapter2.

 TherearethreeclocksourcesforCPU.SelectOscillatorclockoutofthree.Thisselection is done

by CLKSRCSELregister.

 IfwedisablethePLL0SystemclockwillbebypasseddirectlyintoCPUclockdivider register.

 UseCCLKCFGregisterforchoosingthedivisionfactorof4toget3MHzoutof12MHz

Oscillatorfrequency.

 For any other peripherals use the PCLK same asCCLK.Follow the below mentioned

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

22

procedure to do these settings.

Open uVisoin4 under file tab open

C: Keil (4)\ARM\startup\NXP\LPC17xx\system_LPC17xx.c

 Double click on system_LPC17xx.c file at projectwindow

 Select the configuration wizard at thebottom

 Expand theicons

 Select Clockconfiguration

 Under System controls and Statusregisters

OSCRANGE: Main Oscillatorrangeselect 1MHz to20MHz

OSCEN: Mainoscillatorenable √

 Under Clock source select register(CLKSRCSEL)

CLKSRC: PLL clocksourceselection Main oscillator

 Disable PLL0 configuration and PLL1configuration

 Under CPU Clock Configurationregister(CCLKCFG)

CCLKSEL: Divide value for CPU clockforPLL0 4

 Under USB Clock configuration register(USBCLKCFG)

USBSEL: Divide value for USB clockforPLL0 4

 Under Peripheral clock selection register 0 (PCLKSEL0) and 1(PCLKSEL1)

Select Pclk = Cclk for all.

 Under Power control for peripherals(PCONP)

Enable the power for requiredperipherals

 IfCLKOUTtobestudiedconfiguretheClockoutputconfigurationregisterasbelow

CLKOUTSEL : MainOscillator

CLKOUTDIV 1

CLKOUT_EN :√

 Call thefunctions

SystemInit ();

SystemCoreClockUpdate();

At the beginning of the main function without missing.These functions are defined

in system_LPC17xx.c where actual clock and other system control registers configuration takes

place.

NOTE: System core clock (Peripheral CLK)/Operating frequency is calculated as below

Main Oscillator = XTAL = 12MHZ and (CCLKCFG+1) = 4 then

System core clock = Main Oscillator/ (CCLKCFG+1) = 12MHZ / 4 = 3MHZ.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

23

5.3 Flash magic 6.01installations:

Go to Software folder in the CD and run FlashMagic.exe file.

Click next on Welcome wizard

Select the radio button I accept the agreement and click next

Choose a folder to install the files. Click next and choose the option create short cut icon

and click next. Displays the options we have selected

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

24

Click on install and finish

5.4 Project Creation in Keil uvision4IDE:

 Create a project folder before creating NEWproject.

 Use separate folder for eachproject

 Open Keil uVision4 IDE software by double clicking on “Keil Uvision4”icon.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

25

 Go to “Project” then to “New Project” and save it with a name in the

Respective Project folder, already youcreated.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

26

 Select the device as “NXP (founded by Philips)” In that “LPC1768” then Press

OK and then press “YES” button to add “system_LPC17xx.s”file.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

27

 Go to “File” In that “New” to open an editor window. Create your source file And use the

header file “LPC17xx.h” in the source file and save the file. Color syntax highlighting will

be enabled once the file is saved with a Recognized extension such as “.C“.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

28

 Rightclickon“SourceGroup1”andselecttheoption“Add FilestoGroup'SourceGroup 1' “add

the. C source file(s) to thegroup.

 Again right click on Source Group 1 and select the option “Add Existing Files to Group

'Source Group 1' “add the file–C:

Keil4\ARM\startup\NXP\LPC17xx\system_LPC17xx.c

 Any changes made to this file at current project will directly change the source

system_LPC17xx.c file. So that other project settings may get altered. So it is

recommended to copy thefile

C: Keil (4)\ARM\startup\NXP\LPC17xx\system_LPC17xx.c to the project folder and add

to the sourcegroup.

Important: This file should be added at each project creation.

 Then go to “Project” in that “Translate” to compile the File(s).

 Go to “Project” in that “Build Target” for building all source files such as “.C”,”.ASM”, “.h”,

files, etc…This will create the hex file if no warnings & noErrors.

5.5 Settings to be done in KEILUV4 for Executing Cprograms:

 In Project Window Right click “TARGET1” and select “options for target„TARGET1‟

 Then go to option “Target” inthat

1. Xtal 12.0MHz and UseMicroLIB

2. Select IROM1 (starting 0×0 size0×8000).

3. Select IRAM1 (starting 0×10000000 size0×8000).

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

29

 Then go to option“Output”

 Select “Create Hexfile”.

 Then go to option“Linker”

 Select use memory layout from targetdialog

6. TEST SET UP & TESTPROCEDURE:

6.1 TEST SET UPREQUIREMENTS:

 ALS-SDA-ARMCTXM3-06 : 1No.

 Powersupply(+5V) : 1No.

 USB-to-SERIAL cable for programming andserialcommunication : 1No.

 Kiel uvision4 and flash magic6.01

 OneworkingCOMportinthehostcomputersystemandPCfordownloadingthe

software.

 1 numbers 26 core FRC cables of 2 inchlength

6.2 TEST SETUP:

 Connect +5V power cable toDB1.

 Do not insert the piggyback module into the board before testing the voltagelevels.

 Remove JP5 and then switch on the powersupply.

 Check+5VatTP1.IfvoltagesareatrightlevelthencheckifanyIC'sgettingwarm.

 Insert JP5 and check +3.3V atTP3

 Then switch off the power supply, insert the piggybackmodule.

 Also make sure the regulator output which is flowing into the controller is3.3V

6.3 FLASH PROGRAMMING

 Connect 9 pin DSUB USB-to-SERIAL cable from PC to DB2 at theboard.

 On the 2 way dip switch SW3 and Short jumperJP7.

 Open flash magic6.01.

 Some Settings in FLASHMAGIC:

Step1. Communications:

Device :LPC1768

ComPort : COM1 (Check theCOM here .Computerright

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

30

ClickManageDeviceManagerPorts)

Baud Rate 19200

Interface : None (ISP)

Oscillator :12MHz

Step2. ERASE:

Select “Erase Blocks Used By Hex File”.

Step3. Hex file:

Browse and select the Hex file which you want to download.

Step4. Options:

Select “Verify After Programming”.

Go to Options ->Advanced Options->communications

Do not select High Speed Communications

Keep baud rate 115200.

Options ->Advanced Options->Hardware config

Select Use DTR & RTS to control RST & ISP Pin.

Select Keep RTS asserted while COM Port open.

T1 = 50ms. T2 = 100ms.

Step5. Start:

Click Start to download the hex file to the controller.

After downloading the code the program starts executing in the hardware, then switch off

SW3 and remove the ISP jumper JP7.

7. HARDWAREDETAILS

7.1 CONNECTORDETAILS:

 CN1CONNECTOR:28pin14X2HEADERisconnectedtothecontroller.
Pin# DESCRIPTION PIN # DESCRIPTION

1 TDO-JTAG 2 TDI-JTAG

3 TMS-JTAG 4 TRST-JTAG

5 TCK-JTAG 6 PC3

7 PC2 8 PC1

9 PC0 10 3.3V

11 GND 12 3.3V

13 NC 14 NC

15 GND 16 RTCX1

17 RESET 18 RTCX2

19 VBAT 20 ADC

21 CP1.30 22 NC

23 NC 24 C_P0.28

25 C_P0.27 26 NC

27 NC 28 NC

 CN2CONNECTOR:28pin14X2HEADERisconnectedtothecontroller.

Pin# DESCRIPTION PIN # DESCRIPTION

1 NC 2 NC

3 C_P2.12 4 PWM

5 3.3V 6 C_P0.29

7 C_P0.30 8 GND

9 C_P1.18 10 C_P1.19

11 ROW0 12 ROW1

13 ROW2 14 ROW3

15 C_P1.24 16 C_P1.25

17 NC 18 GND

19 3.3V 20 C_P1.27

21 C_P1.28 22 C_P1.29

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

31

23 C_P0.0 24 C_P0.1

25 PB6 26 PB7

27 EINT 28 NC

 CN3CONNECTOR:28pin14X2HEADERisconnectedtothecontroller.

PIN # DESCRIPTION PIN # DESCRIPTION

1 NC 2 NC

3 ILED 4 EINT1

5 ISP 6 3.3V

7 GND 8 PA7*

9 PA6 10 PA5

11 PA4 12 PA3

13 PA2 14 PA1

15 PA0 16 LD7/CON

17 LD6 18 LD5

19 LD4 20 LEN

21 LRS 22 PC7

23 3.3V 24 GND

25 PC6 26 PC5

27 PC4 28 NC

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

32

CN4 CONNECTOR: 28 pin 14 X 2 HEADER is connected to thecontroller.

PIN # DESCRIPTION PIN # DESCRIPTION

1 PB5 2 PB4

3 PB3 4 PB2

5 PB1 6 PB0

7 C_P4.28 8 GND

9 3.3V 10 C_P4.29

11 C_P1.17 12 C_P1.16

13 C_P1.15 14 C_P1.14

15 C_P1.10 16 C_P1.4

17 C_P1.8 18 C_P1.9

19 C_P1.1 20 C_P1.0

21 3.3V 22 GND

23 TXD0 24 RXD0

25 RTCK-JTAG 26 NC

27 NC 28 NC

 CN5 CONNECTOR: 2 pin MKDSN connector for RELAYinterface

PIN # DESCRIPTION

1 Connected to POL1 of Rly2

2 Connected to NO contact of Rly2

 CN6 CONNECTOR: 20 pin FRC connected to the controller, Standard JTAG connector for

programming/debuggingwithARM-JTAGdebugger.SHORTjumperJP1for JTAGtowork.

PIN # DESCRIPTION PIN # DESCRIPTION

1 +3.3V 2 +3.3V

3 TRST 4 GND

5 TDI 6 GND

7 TMS 8 GND

9 TCK 10 GND

11 RTCK 12 GND

13 TDO 14 GND

15 RST 16 GND

17 R10 ONE END 18 GND

19 R11 ONE END 20 GND

 CN7 CONNECTOR: 26 pin FRC connected to the controller, which is compatiblewith

ALS Standard External Interfaces. SHORT jumper JP4 to connect External Interfaces.
PIN # DESCRIPTION PIN # DESCRIPTION

1 PC4(P2.0) 2 PC5(P2.1)

3 PC2(P0.25) 4 PC3(P0.26)

5 PC0(P0.23) 6 PC1(P0.24)

7 PB6(P0.10) 8 PB7(P0.11)

9 PB4(P0.8) 10 PB5(P0.9)

11 PB2(P0.6) 12 PB3(P0.7)

13 PB0(P0.4) 14 PB1(P0.5)

15 PA6(P0.21) 16 PA7(P0.22)

17 PA4(P0.19) 18 PA5(P0.20)

19 PA2(P0.17) 20 PA3(P0.18)

21 PA0(P0.15) 22 PA1(P0.16)

23 PC6*(P2.2 2nd PIN OF JP13) 24 PC7(P2.3)

25 +5V THROUGH JP4 26 GND

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

33

 CN8CONNECTOR:26pinFRCconnectedtothecontroller,whichiscompatiblewith

ALS Standard External Interfaces.

PIN # DESCRIPTION PIN # DESCRIPTION

1 *PC4 2 *PC5

3 *PC2 4 *PC3

5 *PC0 6 *PC1

7 *PB6 8 *PB7

9 *PB4 10 *PB5

11 *PB2 12 *PB3

13 *PB0 14 *PB1

15 *PA6 16 *PA7

17 *PA4 18 *PA5

19 *PA2 20 *PA3

21 *PA0 22 *PA1

23 *PC6 24 *PC7

25 +5V THROUGH JP4 26 GND

7.2 DSUB CONNECTORDETAILS:

 DB1 CONNECTOR: 9-Pin D-type Male Powerconnector.

Pin Number Description
1,2,3,6,7,8 No Connection

4 GND

5 GND
9 +5V

 DB2 CONNECTOR: (UART0) 9-Pin D-type Female connector connects to the COM port

of host PC for In System Programming (ISP) application and transferring the data

between controller device and host computer. Use a cross cable to connect to PC. NOTE:

DTR and RTS lines arerequired.

Pin Number Description

1,6,8,9 NC

3 R0IN

2 T0OUT

5 GND

4 DTR

7 RTS

7.3 POWERMATEDETAILS:

 PM1:5 Pin Power mate (High Current Output Lines for StepperMotor).

Pin Number Description

1 +5V

2 OUT1(A)

3 OUT2(B)

4
5

OUT3(C)

OUT4(D)

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

34

7.4 JUMPERDETAILS:

JUMPERS CONNECTION DESCRIPTION

JP1 (1,2) Closed To enable JTAG Programming.

JP2 (1,2) Closed CN7-16 to P0.22.

JP2 (2,3) NC NA

JP3 (1,2) Closed Ref Volt applied to DAC

JP4(1,2) Closed 5V supply to connector

JP5 (1,2) Closed Connects 3.3v to board

JP6 (1,2) Closed External Interrupt (INT3) is given through SW2.

JP7 (1,2) Closed ISP signal to the controller

JP8 (1,2) Closed NA

JP8 (2,3) Closed To Test UART1(TXD1) of LPC1768

JP9 (1,2) Closed Enable internal ADC circuit

JP10 (1,2) Closed Enable PWM circuit

JP11(1,2) Closed The output wave form is Uni-Polar

JP11(1,2) Open The output wave form is Bi-Polar

JP12(1,2) Closed General Purpose Switch is given through SW4.

JP13(1,2) Closed To connect CN3.25 to CN7.23.

JP14(2,3) Closed To connect SCK to CN3.14.

JP15(2,3) Closed To connect MISO to CN3.13.

JP16(2,3) Closed To connect MOSI to CN3.12.

JP17(2,3) Closed To connect SSEL to CN3.15.

JP18(2,3) Closed To connect SCL to CN3.10.

JP19(2,3) Closed To connect SDA to CN3.11.

JP20(1,2) Closed NA

JP20(2,3) Closed To Test UART1(RXD1) of LPC1768

JP21(2,3) Closed To Operate DC motor of 1768

7.5 TESTPOINTS:

TEST POINTS DESCRIPTION

TP1,TP7 +5V

TP3, TP4 +3.3V

TP2, TP5,TP6 GND

TP8 PWM OUTPUT

7.6 SWITCHDETAILS:

SWITCH DESCRIPTION

SW1 RESET SWITCH

SW2 External Interrupt connected to P2.13 of Controller.

SW3 2-WAY Dipswitch to control RTS & DTR lines for ISP.

SW4 General Purpose Switch

SW5 2-WAY dip switch to enable each 7-segment display.

SW6 – SW21 4x4 Keypad switches.

7.7 POTDETAILS:

 POT1: 10K ANVI POT for testing INTERNAL ADC ofCONTROLLER.

 POT2: 50K ANVI POT for LCDContrast.

 POT3: 5K ANVI POT for DAC0800 interface circuit (To control Vref forDAC).

 POT4: 10K ANVI POT for SPI ADCCircuit

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

35

7.8 ICDETAILS:
IC’s DESCRIPTION

U1 LM317 VOLTAGE REGULATOR (3 PIN)

U2 MAX3232 RS232 LINE DRIVER(16 PIN)

U3 ICL7660S SUPER VOLTAGE Converter (8 PIN)

U4 LM358 DUAL OP AMP (8 PIN)

U5 74HCT244 OCTAL BUFFER (20 PIN)

U6 ULN2803 DRIVER 8 Darlington array(18 PIN)

U7 MCP3202 SPI ADC(8 PIN)

U8,U9 LT543 SEVEN SEGMENT DISPLAY (10 PIN)

U10 AT24C16 I2C NVROM IC

U11 LM335 Temperature sensor

U12 DAC0800 Digital to Analog (16 PIN)

7.9 RELIAMATEDETAILS:

1. RM1: 16 pin Single female Berg for LCDInterface.
PIN # DESCRIPTION PIN # DESCRIPTION

1 GND 9,10 NO CONNECTION

2 +5V 11 DATA LINE D4(P2.6)

3 50K ANVI POT (POT2) 12 DATA LINE D5(P2.7)

4 RS(P2.4) 13 DATA LINE D6(P2.8)

5 GND 14 DATA LINE D7(P2.9)

6 CSE(P2.5) 15 +5V(Backlight)

7,8 NO CONNECTION 16 GND

2. RM2: UART1Interface

Pin Number Description

1 TX

2 RX

3 GND

2. RM3: DAC 0800Interface

Pin Number Description

1 Connected to DAC O/P

2 GND

3. RM4: DCMOTOR

Pin Number Description

1 Connected to POLE1 of Rly1

2 Connected to POLE2 of Rly1

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

36

8. CABLEDETAILS

8.1 APPLYINGPOWER:

Use the following procedure to apply power. Connect a 9-pin DSUB Female Connector to a 9-pin

DSUB Male connector DB1 provided on the Evaluation Board. The color code for the supply is

shown in table below:

PINNUMBERS POWER

9 +5V

4,5 GND

8.2 SERIAL COMMUNICATION:

TheRS232CrosscableconnectionsrequiredforestablishingcommunicationbetweenEvaluation Board

and a display terminal/host computer system is givenbelow (ON BOARD it is DB2).

Open the Hyper Terminal & set the host computer system baud rate to 9600, data length to 8

bit, parity bit to none and stop bits to 1.

DB2 PIN NO. (9 PIN MALE) COMPUTER (COM PORT) PIN NO. (9-PIN FEMALE)

2-TXD 2-RXD

3-RXD 3-TXD

4-DTR 4-DTR

7-RTS 7-RTS

5-SIGNAL GND 5-SIGNAL GND

1,6,8,9 NC

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

37

9. ONBOARDINTERFACES

9.1 UART0 interfaceblock:

If you are connecting this Evaluation board to a computer, you have to use Hyper Terminal or

Any other UART communication package. This package allows the user to use computer as a

simple display terminal for Evaluation board and to transfer data between computer and

Evaluation board. To set Hyper terminal communication package refer the following steps.

NOTE: USER MUST DOWNLOAD THE HYPERTERMINAL SOFTWARE FROM INTERNET.

Follow the sequence as Start -> All Programs ->Accessories ->Communications ->

Hyper Terminal.

 Give the name for Hyper Terminal and then pressOK.

 The window “Connect To” will appear, Select the COM port you are using in “Connect
Using”option.

 Go to FILE MENU click on properties then click onConfigure.

Select the” Port Settings”

Bits per Sec : 9600 (Depends on application software)

Databits 8

Parity :None

Stopbits 1

Flow control : None

Then Press ->OK

Go to “File” -> “Save”

 After opening the window “Disconnect” it by clicking on Call → Disconnect or just
clicking on disconnecticon.

 Now go to File → Properties. Select 'Settings'. Select ASCII setup. A new window will
come. In that select these 2options:

ASCII Sending → Send line ends with line feeds

ASCII Receiving → Append line feeds to incoming line ends
Click OK. Now Call (Call → Call) again.

 Bring the Shortcut icon for Hyper Terminal on the Desktop of yourcomputer.

Use USB-to-SERIAL Cable from 9-pin DSUB Female connector to the PC Com port.

UART0 is used for the boot loader purpose. Also can be used for interfacing with PC for any

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

38

communication purpose. DB2 has the TXD and RXD of UART0 along with the handshaking lines

RTS and DTR. MAX232 is used between this connector and controller. Hence the signals at DB2

will be in RS232 level. These lines cannot be used directly for TTL interface. A conversion must

be done from RS232 to TTL level at other side if they have to be used with TTL lines.

DB2 - (UART0) 9-Pin D-type Female connector connects to the COM port of host PC for In

System Programming (ISP) application and transferring the data between controller device and

host computer. If UART0 is used for the flash programming on the switch SW3. Off the SW3 if

UART0 is used for communication purpose. Note that there is an interfacing RS232 USB-to-

SERIAL device between the connector and the device pins listed below

Pin Number at CN9 Pin LPC1768 Description

1,6,8,9 - NC

3 99(P0.3) R0IN – RXD0

2 98(P0.2) T0OUT – TXD0

5 - GND

4 17(RESET) DTR

7 53(P2.10) RTS

9.2 AlphanumericLCD:

A 16×2 alphanumeric LCD can be used to display the message from controller. 16 pin small

LCD has to be mounted to the connector RM1. Only higher 4 data lines are used among the 8

LCD data lines. Use POT2 for contrast adjustment.

Pin no RM1 Description

1 Ground

2 +5V

3 LCD contrast

4 RS

5,7,8,9,10 NC

6 En

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

39

11 to 14 Data 4 to 7

15 Back light anode

16 Back light cathode

9.3 Relay buzzer and Motors controlblock:

It is a high Current applications block where a stepper motor, a Dc motor and a relay

are interfaced through the high current driver ULN2803 (U6). These lines will have high

current (max 300 mA) with low voltage level of 0.7V.

The Stepper motor can be interfaced to the board by connecting it to the Power Mate

PM1. The direction of the rotation can be changed through software. The DC Motor can also

beinterfacedtotheboardbyconnectingittotheReliamateRM4.Thedirectionoftherotation can be

changed throughsoftware.

The Relay RLY2 is switched between ON and OFF state. The LED L2 will toggle for

every relay switch over. The contact of NO & NC of the relay can be checked at the MKDSN

connector CN5 pins 1 & 2 using a Digital Multi meter – these contacts can be connected to

externaldevices.

By connecting 26 pin FRC cable from CN7 to CN8 this block can be interfaced and the port

lines details are given in the table.

CN8 Pin # Description

1, 2, 23, 24 Buffered from U6 used for stepper motor control

3 Buffered from U6 & connected to RLY2 coil. coil other end is connected to +5V

5 Connected to pin 1 of U6; corresponding output of U6 is taken to NO and NC

contacts of relay RLY1

4 One end of coil of relay RLY1

6 Controls the buzzer

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

40

CN5 – 2 pin MKDSN connector provides the RLY2 relay output for external use.

Pin 1 – COM of the relay.

pin 2 – NO of the relay.

RM4 – it's a 2 pin straight male reliamate. COM pins of relay RLY1 are terminated here. It is

used to run and direction control of DC motor.

PM1 – it's a 5 pin straight male power mate.

Pin no Description

1 +5v supply

2 Phase A

3 Phase B

4 Phase C

5 Phase D

Pin 2 to 5 are phase A to D output for the stepper motor respectively.

9.4 Internal ADCinterface:

On board there is one interface for internal ADC. AD0.5 (pin P1.31) of controller is used to

convert the analog input voltage varied using POT1 to digital value. A 0 to 3.3V is the input

voltagerange.000toFFFistheconverteddigitalvoltagerangehere.ShortJP9(1,2)tousethis interface.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

41

9.5 Reset Circuit:

It's an active high input to the controller. A low level on this pin causes the controller to be in

reset mode. Switch-SW1 to be used for the purpose of resetting the controller.

9.6 ISP Circuit:

A LOW level after reset at pin P2.10 is considered an external hardware request to start the ISP

command handler. Assuming that power supply pins are on their nominal levels when the rising

edge on RESET pin is generated, it may take up to 3 ms before P2.10 is sampled and the

decision on whether to continue with user code or ISP handler is made.

During programming the controller using Flash magic software, jumper – JP7 needs to be

shorted. This jumper connects the ISP line P2.10 to ground level during the Flash magic

attempt to program theflash.

NOTE: For more details RTS and DTR signals you must refer the ISP circuit and RESET circuit.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

42

ProgrammingMode: RunMode:

SW3 – is to isolate the hand shaking signals from board signals (RTS, DTR) and connector.

Keep this switch ON before programming the controller flash memory with the application code.

Keep it open to Run the loaded program and reset. Especially if UART0 is using for any

communication purpose, user must keep these switch open to execute UART0 relatedcode.

RTS – Controls the ISP line of the controllerP2.10

DTR – Used to interface controllerreset.

9.7 Serial peripheralInterface:

This block has a 2 channel SPI ADC. Channel 0 input is POT4 and channel 1 input is

Temperature sensor LM335. While interfacing this block do not connect 26 pin FRC cable from

CN7 to CN8 and short the Pins 2&3 at the jumpers JP14, JP15, JP16, JP17. Port lines used are

P0.15 – SCK, P0.16 – SSEL, P0.17 – MISO, P0.18 –MOSI.

9.8 I2C Interface:

This block has I2C NVROM IC. Can be communicated using I2C1. To interface this block short

pin2&3atthejumpersJP18andJP19.Donotconnect26pinFRCcablefromCN7 toCN8.Port lines used

are P0.19 – SDA1, P0.20 –SCL1.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

43

9.9 4×4 key matrixInterface:

The switches SW14 to SW29 are organized as 4 rows X 4 columns matrix. One end of all the

switches are configured as columns. The other end of the matrix configured as rows. A row

line will be always an output from the controller. Column lines are inputs. A low level sent

from the row will appear at column end if the switch ispressed.

Connect 26 pin FRC cable from CN7 to CN8 for interfacing this block with controller.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

44

9.10 PWM Interface:

A PWM output from the controller can be observed as an intensity variation of the LED L3.

Pulses on the CRO can be observed at TP8. Short JP10 to interface this block. Port line P3.25.

9.11 External interrupts:

An external interrupt EINT3 to the controller is generated using the switch SW2. Pressing the

switch generates edge triggered interrupt to the controller.

Short JP6 to use EINT3. Port lines EINT3 – P2.13.

9.12 Seven segment display interface:

There are two multiplexed 7-segment display units (U8, U9) on the board. Each display has

8-inputs SEG_A (Pin-7), SEG_B (Pin-6), SEG_C (Pin-4), SEG_D (Pin-2), SEG_E (Pin-1),

SEG_F (Pin-9), SEG_G (Pin-10) and SEG_H (Pin-5) and the remaining pins pin-3 & pin-8 are

Common Cathode CC. These segments are common cathode type hence active high devices.

At power on enable of all the segments are pulled up. A two bits input through SW5 is used

for multiplexing operation. A high level on these lines enables the corresponding display.

Connection of these enable lines are shown below.

CN8 pin 17 → SW5 pin 1 → EN1 (U8)

CN8 pin 18 → SW5 pin 2 → EN2 (U9)

Data lines:

CN8 pin 13 → SEG A

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

45

CN8 pin 14 → SEG B

CN8 pin 11 → SEG C

CN8 pin 12 → SEG D
CN8 pin 9 → SEG E

CN8 pin 10 → SEG F

CN8 pin 7 → SEG G
CN8 pin 8 → Decimal points

9.13 ExternalDAC:

DAC0800 is used to convert the digital data into analog signals. Digital data from specified port

lines is given to DAC input. Amplitude of output waveform can be varied by varying POT3 (5K)

that is by varying the reference voltage of DAC0800. JP11 (1,2) closed output is uni-polar and

JP11(1,2) open output is bi-polar. Port lines used for DAC are P0.4 – P0.11. Connect FRC cable

from CN7 to CN8 to use this block.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

46

9.14 Spareconnector:

Few unused lines of the board are terminated at a connector – CN9. It's a 30 pin 15×2 male

straight berg. These lines can be used for any external interface if required. A pin descriptionof

this connector is given below.

PIN # Description PIN # Description

1 P0.27/SDA0/USB_SDA 2 P0.28/SCL0/USB_SCL

3 P2.12//EINT2/I2STX_WS 4 P1.18/USB_UP_LED/PWM1.1/CAP1.0

5 P1.19/MCOA0/USB_PPWR/CAP1.1 6 P1.24/MCI2/PWM1.5/MOSI0

7 P1.25/MCOA1/MAT1.1 8 P1.27/CLKOUT/USB_OVRCR/CAP0.1

9 P1.28/MCOA2/PCAP1.0/MAT0.0 10 P1.29/MCOB2/PCAP1.1/MAT0.1

11 P0.0/RD1/TXD3/SDA1 12 P0.1/TD1/RXD3/SCL1

13 P4.28/RX_MCLK/MAT2.0/TXD3 14 P4.29/TX_MCLK/MAT2.1/RXD3

15 P1.0/ENET_TXD0 16 P1.1/ENET_TXD1

17 P1.4/ENET_TX_EN 18 P1.8/ENET_CRS

19 P1.9/ENET_RXD0 20 P1.10/ENET_RXD1

21 P1.14/ENET_RX_ER 22 P1.15/ENET_REF_CLK

23 P1.16/ENET_MDC 24 P1.17/ENET_MDIO

25 P0.29/USB_D+ 26 P0.30/USB_D

27 RTCX1 28 RTCX2

29 VBAT 30 Ground

10. DEMO PROGRAMS IN KEIL UVISION4IDE

For all the SYLLABUS or demo programs make sure that the corresponding settings have to be

made:

 Both Switches of SW3 should be in ON position for ISPprogramming.

 Short JP7 for ISPprogramming.

 Short JP5 to connect +3.3v into thecircuit.

 Short JP4 to connect +5v to InterfaceBoard.

 Connect the 26 core FRC cable CN7 to CN8 to connect to On-boardinterfaces.

 Connect CN7 for ExternalNIFC's.

DEMO PROGRAMS:

NOTE: Do not short any Jumpers JP14, JP15, JP16, JP17, JP18 and JP19 when 26 pin FRC cable
is connected from CN7 to CN8. While using SPI and I2C do not connect 26 pin FRC cable from
CN7 to CN8.

10.1 Test UART0test:

Download the file “UART0_test.hex” to trainer using Flash Magic 6.01 version.

Switch off SW3, Un-short JP7. Press the reset switch (SW1) to run the program.

Result:

Open the hyper terminal, the Constant string “Hello World” will be displayed on the hyper

terminal.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

47

10.2 Test DC Motor:

A) DC Motor Speed control using on chipPWM:

Download the file “dcm_speed_control.hex” to trainer using Flash Magic 6.01 version.

Connect the Female Reliamate of the DC motor to the male Reliamate RM4 present on the

board. Short JP21/2&3 ,Switch off SW3, Un-short JP7. Press the reset switch (SW1) to run the

program.

Result:

Observe the rotation of the dc motor (Controlled by On chip PWM) Varies from slow speed to

higher speed and Vice Versa. This rotation of the motor will be continuously in loop.

B) DC Motor directionControl:

Download the file “dcm_direction.hex” to trainer using Flash Magic 6.01 version.

Connect the Female Reliamate of the DC motor to the male Reliamate RM4 present on the

board. Short JP21/2&3 and Connect the 26pin FRC between CN7 and CN8. Switch off SW3, Un-

short JP7. Press the reset switch (SW1) to run the program.

Result:

Observe the Clockwise and Anti-Clockwise rotation of the dc motor with respect On/Off of Relay

RLY1. This rotation of the motor will be continuously in loop.

10.3 Test Stepper Motor

Download the file “steppermtr.hex” to trainer using Flash Magic 6.01 version.

Connect the Female Power mate of the stepper motor to the male Power mate PM1 present on

the board. Jumper JP13 (1, 2) should be shorted and all the other jumpers should be removed.

Switch off SW3, Un-short JP7. Press the reset switch (SW1) to run the program.

Result:

Observe the stepper motor rotation it should rotate Clockwise &Anti Clockwise direction.

This rotation of the motor will be continuously in loop.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

48

10.4 Test Internal ADC:

Download the file “Int_ADC.hex” to trainer using Flash Magic 6.01 version.

Jumper JP9 should be shorted and all the other jumpers should be removed. Switch off SW3,

Un-short JP7. Press the reset switch (SW1) to run the program.

Result:

This routine is used to study the internal Feature of the LPC1768 Microcontroller. Vary the POT1

(10K) and observe the corresponding analog (0-3.30V) & digital value (0-fff) on LCD.

10.5 TestDAC0800:

A) SineWave:

Download the file “SINE.hex” to trainer using Flash Magic 6.01 version.

Jumper JP3 should be shorted. Jumper JP11 should be open for bipolar mode. Jumper JP11

should be short for unipolar mode and all the other jumpers should be removed. Switch off

SW3, Un-short JP7. Press the reset switch (SW1) to run the program.

Result:

Observe the Analog output waveform at the Pin-1 of RM3 using Oscilloscope (CRO) with respect

to GND pin-2 of RM3.

NOTE: POT3 is provided to control the Reference voltage for DAC output (Vref).User will get

maximum 2.5V peak to peak for uni-polar and 5V peak to peak for Bipolar.

B) SquareWave:

Download the file “Square.hex” to trainer using Flash Magic 6.01 version.

Jumper setting are same as sine wave.

Result:

Observe the Analog output waveform at the Pin-1 of RM3 using Oscilloscope (CRO) with respect

to GND pin-2 of RM3.

NOTE: POT3 is provided to control the Reference voltage for DAC output (Vref).User will get

maximum 2.5V peak to peak for uni-polar and 5V peak to peak for Bipolar.

C) Triangle Wave:

Download the file “Triangle.hex” to trainer using Flash Magic 6.01 version.

Jumper setting are same as sine wave.

Result:

Observe the Analog output waveform at the Pin-1 of RM3 using Oscilloscope (CRO) with respect

to GND pin-2 of RM3.

NOTE: POT3 is provided to control the Reference voltage for DAC output (Vref).User will get

maximum 2.5V peak to peak for uni-polar and 5V peak to peak for Bipolar.

10.6 Test Keypad (4X4Matrix):

Download the file “KEY_LCD.hex” to trainer using Flash Magic 6.01 version. Switch off SW3, Un-

short JP7. Press the reset switch (SW1) to run the program.

Result:

Press the keys SW6 to SW21 and the Corresponding outputs „0 to F‟ will be displayed on the

LCD.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

49

10.7 Test Pulse Width Modulation(PWM):

Downloadthefile“PWM.hex”totrainerusingFlashMagic6.01version.

Jumper JP10 should be shorted all the other jumpers should be removed. Switch off SW3, Un-

short JP7. Press the reset switch (SW1) to run the program.

Result:

Observe the output on CRO at TP8 and also LED L3 (intensity of LED will vary).

10.9 Test ExternalInterrupt:

Download the file “EXINT.hex” to trainer using Flash Magic 6.01 version.

Jumper JP6 should be shorted, all the other jumpers should be removed. Switch off SW3, Un-

short JP7. Press the reset switch (SW1) to run the program.

Result:

When switch SW2 pressed the port line goes low & the external interrupt occurs at port line

P2.13. To show the external interrupt has been occurred LED L2 has been used (Toggle for each

Press).

10.10 TEST 7 SegmentDisplay:

Download the file “Seven_seg.hex” to trainer using Flash Magic 6.01 version.

Both pins of SW5 should be in ON position. Switch off SW3, Un-short JP7. Press the reset

switch (SW1) to run the program.

Result:

Observe display changing from 00 to FF. This process is continuously in loop

Control RELAY\BUZZER\LED ThroughSwitch:

Download the file “RELAY.hex” to trainer using Flash Magic 6.01 version.

Short jumper JP12.

Result:

Press SW4 on the buzzer section, see that Relay RLY2, Led L4 and Buzzer BZ1 are On and when

user releases the push button the Relay RLY2, L4 and Buzzer should be in Off condition. Relay

Common and NO are brought out to CN5 connector.

10.11 SPI TemperatureSensor

Download the file “SENSOR.hex” to trainer using Flash Magic 6.01 version.

Remove inter connected cable CN7 and CN8. Short JP14 JP15 JP16 JP17/2&3. Do the serial

communications set up with hyper terminal with baud rate of 9600. Switch off SW3, Un-short

JP7. Press the reset switch (SW1) to run the program.

NOTE: While doing this experiment user must measure the voltage of the Power Supply. That

measured voltage will be considered as your Vref for LM335 interface. In software you must

alter the defined value of Vref (for more details refer the description of the program).

Result:

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

50

Temperature value will display on hyper terminal.

11. DEMO ASSEMBLYPROGRAMS

11.1 ALP to multiply two 16bit binarynumbers.

Download the file “16_bit_mul/mul.hex” to trainer using Flash Magic 6.01 version.

Here two 16 bit Numbers used for the multiplication are 0x706F and 0x7161.User can

change the inputs. Switch off SW3, Un-short JP7. Press the reset switch (SW1) to run the

program.

Result:

Multiplied result is displayed on the LCD.

11.2 ALP to find the sum of first 10 integernumbers.

Download the file “sum_of_1_to_10/sum.hex” to trainer using Flash Magic 6.01 version.

Here first 10 natural numbers are 01 to 10 so sum will be 55. Switch off SW3, Un-short

JP7. Press the reset switch (SW1) to run the program.

Result:

Added result is displayed on the LCD.

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

51

12. TROUBLESHOOTING

1. PowerSupply:

 Short jumper JP5 to connect+3.3V.

2. In System Programming / Download(ISP):

 In System Programming or download could not be established properly

then check out whether the following conditions aremet

 The cable used for communication should be USB-to-SERIALcable.

 Dipswitch ON 1 & 2 switches of the SW3 DTR and RTS for serial
communication.

 IC MAX232 is in good condition.

3. JTAG Programming /Download:

 Short jumper JP1 (RTCK) forcommunication.

 Dip Switch ON 1 &2 pins of the SW3 DTR and RTS for serial
communication.

4. GeneralProblems:

 Make Proper Jumper Connections as mentioned in HardwareDetails.

 Make Proper Connections as mentioned in Demo Programs Setup.

13. QUICKREFERENCE

PORT LINE DETAILS – Used for on board interfaces

SL No. PROGRAM NAME PORT LINE

1 LCD P2.4 - P2.9

2 7SEG DISPLAY P0.4 - P0.11 & P0.19 - P0.22

3 STEPPER MOTOR P2.0 – P2.3

4 DC MOTOR P1.24& P0.26

5 RELAY P0.25

6 BUZZER P0.24

7 EXT-INTERRUPT0 P2.13

8 DAC0800 P0.4 – P0.11

9 PWM P3.25

10 Internal ADC P1.31

11 4X4 KEY MATRIX P1.16 – P1.23

12 SPI P0.17,P0.18,P0.19,P0.20

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

52

/***

 * EXP1 : UART0 test Demonstration(To display HELLO WORLD)

 --
 * Controller : LPC1768
* Description : In this example fixed string "HELLO WORLD" is displayed

 * on the Hyperterminal using Uart0 Feature.
 --

**/

#include<LPC17xx.h>

void delay(unsigned int r1);

void UART0_Init(void);
void UART0_IRQHandler(void);

unsigned long int r=0, i = 0;
unsigned char tx0_flag=0;

unsigned char *ptr, arr[] = "Hello world\r";

int main(void)

{
 SystemInit();

 SystemCoreClockUpdate();
 UART0_Init();
 while(1)

 {
 ptr = arr;

 while (*ptr != '\0'){
 LPC_UART0->THR = *ptr++;
 while(tx0_flag == 0x00);

 tx0_flag = 0x00;
 for (i=0; i<200; i++);

 }
 for (i=0; i<500; i++)

 delay(625);
 }
}

void UART0_Init(void)

{
 LPC_SC->PCONP |= 0x00000008; //UART0 peripheral enable
 LPC_PINCON->PINSEL0 |= 0x00000050;

 LPC_UART0->LCR = 0x00000083; //enable divisor latch, parity
disable, 1 stop bit, 8bit word length

 LPC_UART0->DLM = 0X00;
 LPC_UART0->DLL = 0x13; //select baud rate 9600 bps

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

53

 LPC_UART0->LCR = 0X00000003;

 LPC_UART0->FCR = 0x07;
 LPC_UART0->IER = 0X03; //select Transmit and receive interrupt

 NVIC_EnableIRQ(UART0_IRQn); //Assigning channel
}

void UART0_IRQHandler(void)

{
 unsigned long Int_Stat;
 Int_Stat = LPC_UART0->IIR; //reading the data from

interrupt identification register
 Int_Stat = Int_Stat & 0x06; //masking other than txmit

int & rcve data indicator

 if((Int_Stat & 0x02)== 0x02) //transmit interrupt

 tx0_flag = 0xff;
}

void delay(unsigned int r1)
{

 for(r=0;r<r1;r++);
}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

54

/***

 * EXP2A:DC MOTOR CONTROL USING ON CHIP PWM

 --
 * Controller : LPC1768
 * Description : Port line P1.24 used for the PWM feature.When T0TC matches

 * the MR0 counts interrupt is generated
 * and Duty cycle will be changed.Depends upon the Duty cycle Motor speed is also

changes.
 * PWM 1.5 is used. Match register 0 is used for count purpose. PWM 1
 * match register 5 is increamented or decreamented at each interrupted.

 --

**/

#include <lpc17xx.h>

void pwm_init(void);

void PWM1_IRQHandler(void);

unsigned long int i,j;

unsigned char flag,flag1,flag2;

int main(void)
{
 SystemInit();

 SystemCoreClockUpdate();
 pwm_init();

 while(1)
 {

 for(i=0;i<=1000;i++); // delay

 }//end of while
}//end of main

void pwm_init(void)
{

 LPC_SC->PCONP |= (1<<6); //PWM1 is powered
 LPC_PINCON->PINSEL3 |= 0x00020000; //pwm1.5 is selected for the pin P1.24

 LPC_PWM1->PR = 0x00000000; //Count frequency : Fpclk
 LPC_PWM1->PCR = 0x0002000; //select PWM5 single edge & PWM5 o/p is enb

 LPC_PWM1->MCR = 0x00000003; //Reset and interrupt on PWMMR0
 LPC_PWM1->MR0 = 30000; //setup match register 0 count

 LPC_PWM1->MR5 = 0x00000100; //setup match register MR5
 LPC_PWM1->LER = 0x000000FF; //enable shadow copy register

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

55

 LPC_PWM1->TCR = 0x00000002; //RESET COUNTER AND PRESCALER

 LPC_PWM1->TCR = 0x00000009; //enable PWM and counter

 NVIC_EnableIRQ(PWM1_IRQn);
 return;
}

void PWM1_IRQHandler(void)

{
 LPC_PWM1->IR = 0xff; //clear the interrupts

 if(flag == 0x00)
 {

 LPC_PWM1->MR5 += 100;
 LPC_PWM1->LER = 0x000000FF;

 if(LPC_PWM1->MR5 >= 37000)
 {
 flag1 = 0xff;

 flag = 0xff;
 LPC_PWM1->LER = 0x000000fF;

 }
 for(i=0;i<8000;i++);
 }

 else if(flag1 == 0xff)

 {

 LPC_PWM1->MR5 -= 100;

 LPC_PWM1->LER = 0x000000fF;

 if(LPC_PWM1->MR5 <= 0x500)
 {

 flag = 0x00;
 flag1 = 0x00;
 LPC_PWM1->LER = 0X000000fF;

 }
 for(i=0;i<8000;i++);

 }
}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

56

/**

 * EXP2B.DCM Direction Control
 *---

 * Controller : LPC1768

 * Description :Direction of the DCM is cotrolled in this software by alternatively

inter-
 * changing the supply with the help Relay. Port lines: P1.24 and P0.26.

 * Port line P1.24 used for the PWM feature.When T0TC matches
 * the MR0 counts interrupt is generated
 * and Duty cycle will be changed.Depends upon the Duty cycle Motor speed is also

changes.
 * PWM 1.5 is used. Match register 0 is used for count purpose. PWM 1

 * match register 5 is increamented or decreamented at each interrupted.
 --

**/

#include <LPC17xx.H>

void Clock_Wise(void);

void AClock_Wise(void);

unsigned long i;

int main(void)

{
 SystemInit();

 LPC_PINCON->PINSEL1 &= 0xFFCFFFFF; //P0.26 GPIO, P0.26 controls dir
 LPC_PINCON->PINSEL3 &= 0xFFFFCFFF; //P1.24 GPIO
 LPC_GPIO0->FIODIR |= 0x04000000; //P0.26 output

 LPC_GPIO1->FIODIR |= 0x01000000; //P1.24 output

 while(1)
 {

 Clock_Wise();
 for(i=0;i<200000;i++);
 AClock_Wise();

 for(i=0;i<200000;i++);

 } //end while(1)
} //end main

void Clock_Wise(void)
{

 LPC_GPIO1->FIOCLR = 0x01000000; //P0.23 Kept low to off DCM
 for(i=0;i<10000;i++); //delay to componsate inertia

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

57

 LPC_GPIO0->FIOSET = 0x04000000; //coil is on

 LPC_GPIO1->FIOSET = 0x01000000; //motor in on
 return;

} //end void Clock_Wise(void)

void AClock_Wise(void)

{
 LPC_GPIO1->FIOCLR = 0x01000000; //P0.23 Kept low to off DCM

 for(i=0;i<10000;i++); //delay to componsate inertia
 LPC_GPIO0->FIOCLR = 0x04000000; //coil is off
 LPC_GPIO1->FIOSET = 0x01000000; //Motor is on

 return;
} //end void AClock_Wise(void)

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

58

/**

 * EXP3.Stepper motor Direction control
 *---

 * Controller : LPC1768
 * Description:A stepper motor direction is controlled by shifting the voltage across
 * the coils. Port lines : P2.0 to P2.3.

 *---
***/

#include <LPC17xx.H>

void clock_wise(void);
void anti_clock_wise(void);

unsigned long int var1,var2;
unsigned int i=0,j=0,k=0;

int main(void)
{

 SystemInit();
 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL4 = 0x00000000; //P2.0 to P2.3 GPIO
 LPC_GPIO2->FIODIR = 0x0000000F; //P2.0 to P2.3 output

 while(1)
 {

 for(j=0;j<50;j++) //50 times in Clock wise Rotation
 clock_wise();

 for(k=0;k<65000;k++); //Delay to show anti_clock Rotation

 for(j=0;j<50;j++) //50 times in Anti Clock wise Rotation
 anti_clock_wise();

 for(k=0;k<65000;k++); //Delay to show clock Rotation

 } //End of while(1)
} //End of main

void clock_wise(void)
{

 var1 = 0x00000001; //For Clockwise
 for(i=0;i<=3;i++) //for A B C D Stepping
 {

 LPC_GPIO2->FIOCLR = 0X0000000F;
 LPC_GPIO2->FIOSET = var1;

 var1 = var1<<1; //For Clockwise
 for(k=0;k<15000;k++); //for step speed variation

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

59

 }

}

void anti_clock_wise(void)
{
 var1 = 0x0000008; //For Anticlockwise

 for(i=0;i<=3;i++) //for A B C D Stepping
 {

 LPC_GPIO2->FIOCLR = 0X0000000F;
 LPC_GPIO2->FIOSET = var1;

 var1 = var1>>1; //For Anticlockwise
 for(k=0;k<15000;k++); //for step speed variation

 }
}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

60

/**

 * Alphanumeric LCD

 *---
 * Controller : LPC1768
* Port lines used: Data1 to Data4 - P0.23 to P0.26

 * En - P0.28. RS - P0.27, RW - Ground
 * Connection : CND to CNAB

**/

 #include <lpc17xx.h>

 #include "AN_LCD.h"

 unsigned long int temp1=0, temp2=0 ;

 //lcd initialization
 void lcd_init()
 {

 /* Ports initialized as GPIO */
 LPC_PINCON->PINSEL4 &= 0xFFF000FF; //P2.4 to P2.9

 /* Setting the directions as output */
 LPC_GPIO2->FIODIR |= DT_CTRL;

 LPC_GPIO2->FIODIR |= RS_CTRL;
 LPC_GPIO2->FIODIR |= EN_CTRL;

 clear_ports();
 delay_lcd(3200);

 temp2 = (0x30<<2);

 wr_cn();
 delay_lcd(30000);

 temp2 = (0x30<<2);
 wr_cn();

 delay_lcd(30000);

 temp2 = (0x30<<2);
 wr_cn();
 delay_lcd(30000);

 temp2 = (0x20<<2);

 wr_cn();
 delay_lcd(30000);

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

61

 temp1 = 0x28;
 lcd_com();

 delay_lcd(30000);

 temp1 = 0x0c;

 lcd_com();
 delay_lcd(800);

 temp1 = 0x06;
 lcd_com();

 delay_lcd(800);

 temp1 = 0x01;
 lcd_com();
 delay_lcd(10000);

 temp1 = 0x80;

 lcd_com();
 delay_lcd(800);
 return;

 }

 void lcd_com(void)
 {
 temp2 = temp1 & 0xf0;//move data (26-8+1) times : 26 - HN place, 4 - Bits

 temp2 = temp2 << 2;//data lines from 23 to 26
 wr_cn();

 temp2 = temp1 & 0x0f; //26-4+1
 temp2 = temp2 << 6;
 wr_cn();

 delay_lcd(1000);
 return;

 }

 // command nibble o/p routine
 void wr_cn(void) //write command reg
 {

 clear_ports();
 LPC_GPIO2->FIOPIN = temp2; // Assign the value to the data lines

 LPC_GPIO2->FIOCLR = RS_CTRL; // clear bit RS
 LPC_GPIO2->FIOSET = EN_CTRL; // EN=1
 delay_lcd(25);

 LPC_GPIO2->FIOCLR = EN_CTRL; // EN =0
 return;

 }

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

62

 // data o/p routine which also outputs high nibble first
 // and lower nibble next

 void lcd_data(void)
 {
 temp2 = temp1 & 0xf0;

 temp2 = temp2 << 2;
 wr_dn();

 temp2= temp1 & 0x0f;
 temp2= temp2 << 6;
 wr_dn();

 delay_lcd(1000);
 return;

 }

 // data nibble o/p routine

 void wr_dn(void)
 {

 clear_ports();

 LPC_GPIO2->FIOPIN = temp2; // Assign the value to the data lines

 LPC_GPIO2->FIOSET = RS_CTRL; // set bit RS
 LPC_GPIO2->FIOSET = EN_CTRL; // EN=1

 delay_lcd(25);
 LPC_GPIO2->FIOCLR = EN_CTRL; // EN =0
 return;

 }

 void delay_lcd(unsigned int r1)
 {
 unsigned int r;

 for(r=0;r<r1;r++);
 return;

 }

 void clr_disp(void)
 {
 temp1 = 0x01;

 lcd_com();
 delay_lcd(10000);

 return;
 }
 void clear_ports(void)

 {
 /* Clearing the lines at power on */

 LPC_GPIO2->FIOCLR = DT_CTRL; //Clearing data lines
 LPC_GPIO2->FIOCLR = RS_CTRL; //Clearing RS line

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

63

 LPC_GPIO2->FIOCLR = EN_CTRL; //Clearing Enable line

 return;

 }

 void lcd_puts(unsigned char *buf1)

 {
 unsigned int i=0;

 while(buf1[i]!='\0')
 {

 temp1 = buf1[i];
 lcd_data();

 i++;
 if(i==16)
 {

 temp1 = 0xc0;
 lcd_com();

 }

 }

 return;
 }

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

64

// program to generate square wave with DAC interface

/***
 * EXP5:External DAC interface (Square Wave)

 *--
 * Controller : LPC1768

 * Description : This example explains about how Sqaure Wave is generated.P0.4

to P0.11 are used to get the Digital values.

 0xff ________
 | | |

 | | |
 | | |
 | |

 |
 0x00 | |_________|

******/
#include <LPC17xx.H>

void delay(void);

int main ()
{

 LPC_PINCON->PINSEL0 &= 0xFF0000FF ;
 // Configure P0.4 to P0.11 as GPIO
 LPC_GPIO0->FIODIR |= 0x00000FF0 ;

 while(1)

 {
 LPC_GPIO0->FIOPIN = 0x00000FF0 ;

 delay();
 LPC_GPIO0->FIOCLR = 0x00000FF0 ;
 delay();

 }
}

void delay(void)
{

 unsigned int i=0;
 for(i=0;i<=9500;i++);

}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

65

// program to generate Triangular wave with DAC interface

/***
 * EXP5:External DAC interface (Triangle Wave)

 *--
 * Controller : LPC1768
* Description : This example explains about how Triangular Wave is

generated.P0.4 to P0.11 are used to get the Digital values.

 0xff
 /\ /\
 / \ / \

 / \ / \
 / \ / \

 / \ / \
 0x00 / \/ \

 **/
#include <LPC17xx.H>

int main ()
{

 unsigned long int temp=0x00000000;
 unsigned int i=0;

 LPC_PINCON->PINSEL0 &= 0xFF0000FF ; //
Configure P0.4 to P0.11 as GPIO

 LPC_GPIO0->FIODIR |= 0x00000FF0 ;

 while(1)
 {
 //output 0 to FE

 for(i=0;i!=0xFF;i++)
 {

 temp=i;
 temp = temp << 4;

 LPC_GPIO0->FIOPIN = temp;
 }
 // output FF to 1

 for(i=0xFF; i!=0;i--)
 {

 temp=i;
 temp = temp << 4;
 LPC_GPIO0->FIOPIN = temp;

 }
 }//End of while(1)

}//End of main()

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

66

/**

 * EXP5:External DAC interface (Sine Wave)

 *--
 * Controller : LPC1768
* Description : This example explains about how Sine Wave is generated. Here Y

= Asin(@) since 48 samples are
 used to generate the sine wave so 360/48 = 7.5 degree/sample.

 for example for 15deg Y = 1.25 + Asin(@) = 1.25 + 1.25sin(15) = 1.5735

 for 2.5V -----------------> 0xff

 then 1.5735V -----------------> 0xA1

 |0xff . .
 --|2.5V

for Uni polar
 | . .

 |
 | . 15 .
 |

 | . .
 |

0x7f |--- |1.25V
 | .
 . |

 | .
 . |

 | . .
 |
 ____|_________________________________.___._________________--|0V

 |0x00

**/

#include <LPC17xx.H>

int count=0,sinevalue,value;

unsigned char sine_tab[49]=
 { 0x80,0x90,0xA1,0xB1,0xC0,0xCD,0xDA,0xE5,0xEE,0xF6,0xFB,0xFE,

 0xFF,0xFE,0xFB,0xF6,0xEE,0xE5,0xDA,0xCD,0xC0,0xB1,0xA1,0x90,
 0x80,0x70,0x5F,0x4F,0x40,0x33,0x26,0x1B,0x12,0x0A,0x05,0x02,
 0x00,0x02,0x05,0x0A,0x12,0x1B,0x26,0x33,0x40,0x4F,0x5F,0x70,0x80};

int main(void)

{
 LPC_PINCON->PINSEL0 &= 0xFF0000FF ; //

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

67

Configure P0.0 to P0.15 as GPIO

 LPC_GPIO0->FIODIR |= 0x00000FF0 ;

 count = 0;
 while(1)
 {

 for(count=0;count<48;count++)
 {

 sinevalue = sine_tab[count];//+0X10 ;
 value= 0x00000FF0 & (sinevalue << 4);
 LPC_GPIO0->FIOPIN = value;

 }
 }

}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

68

/***

 * Alphanumeric keypad LCD

 *---
 * Controller : LPC1768
 * Port lines used: Data1 to Data4 - P0.23 to P0.26

 * En - P0.28. RS - P0.27, RW - Ground
 * Connection : CND to CNAB

**/

 #include <lpc17xx.h>

 #include "AN_LCD.h"

 unsigned long int temp1=0, temp2=0 ;

 //lcd initialization
 void lcd_init()
 {

 /* Ports initialized as GPIO */
 LPC_PINCON->PINSEL4 &= 0xFFF000FF; //P2.4 to P2.9

 /* Setting the directions as output */
 LPC_GPIO2->FIODIR |= DT_CTRL;

 LPC_GPIO2->FIODIR |= RS_CTRL;
 LPC_GPIO2->FIODIR |= EN_CTRL;

 clear_ports();
 delay_lcd(3200);

 temp2 = (0x30<<2);

 wr_cn();
 delay_lcd(30000);

 temp2 = (0x30<<2);
 wr_cn();

 delay_lcd(30000);

 temp2 = (0x30<<2);
 wr_cn();
 delay_lcd(30000);

 temp2 = (0x20<<2);

 wr_cn();
 delay_lcd(30000);

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

69

 temp1 = 0x28;
 lcd_com();

 delay_lcd(30000);

 temp1 = 0x0c;

 lcd_com();
 delay_lcd(800);

 temp1 = 0x06;
 lcd_com();

 delay_lcd(800);

 temp1 = 0x01;
 lcd_com();
 delay_lcd(10000);

 temp1 = 0x80;

 lcd_com();
 delay_lcd(800);
 return;

 }

 void lcd_com(void)
 {
 temp2 = temp1 & 0xf0;//move data (26-8+1) times : 26 - HN place, 4 - Bits

 temp2 = temp2 << 2;//data lines from 23 to 26
 wr_cn();

 temp2 = temp1 & 0x0f; //26-4+1
 temp2 = temp2 << 6;
 wr_cn();

 delay_lcd(1000);
 return;

 }

 // command nibble o/p routine
 void wr_cn(void) //write command reg
 {

 clear_ports();
 LPC_GPIO2->FIOPIN = temp2; // Assign the value to the data lines

 LPC_GPIO2->FIOCLR = RS_CTRL; // clear bit RS
 LPC_GPIO2->FIOSET = EN_CTRL; // EN=1
 delay_lcd(25);

 LPC_GPIO2->FIOCLR = EN_CTRL; // EN =0
 return;

 }

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

70

 // data o/p routine which also outputs high nibble first
 // and lower nibble next

 void lcd_data(void)
 {
 temp2 = temp1 & 0xf0;

 temp2 = temp2 << 2;
 wr_dn();

 temp2= temp1 & 0x0f;
 temp2= temp2 << 6;
 wr_dn();

 delay_lcd(1000);
 return;

 }

 // data nibble o/p routine

 void wr_dn(void)
 {

 clear_ports();

 LPC_GPIO2->FIOPIN = temp2; // Assign the value to the data lines

 LPC_GPIO2->FIOSET = RS_CTRL; // set bit RS
 LPC_GPIO2->FIOSET = EN_CTRL; // EN=1

 delay_lcd(25);
 LPC_GPIO2->FIOCLR = EN_CTRL; // EN =0
 return;

 }

 void delay_lcd(unsigned int r1)
 {
 unsigned int r;

 for(r=0;r<r1;r++);
 return;

 }

 void clr_disp(void)
 {
 temp1 = 0x01;

 lcd_com();
 delay_lcd(10000);

 return;
 }
 void clear_ports(void)

 {
 /* Clearing the lines at power on */

 LPC_GPIO2->FIOCLR = DT_CTRL; //Clearing data lines
 LPC_GPIO2->FIOCLR = RS_CTRL; //Clearing RS line

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

71

 LPC_GPIO2->FIOCLR = EN_CTRL; //Clearing Enable line

 return;

 }

 void lcd_puts(unsigned char *buf1)

 {
 unsigned int i=0;

 while(buf1[i]!='\0')
 {

 temp1 = buf1[i];
 lcd_data();

 i++;
 if(i==16)
 {

 temp1 = 0xc0;
 lcd_com();

 }

 }

 return;
 }

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

72

/**

 * EXP8 : Ext interrupt 3

 * --
 * Controller : LPC1768

 * Project : ALS-SDA-ARMCTXM3-06

 * Description :This example senses the extenal interrupt 3 through the pin P2.13
 * caused through the switch SW10. Toggeles the LED L10 if there is an
 * interrupt. Port line: EX INT - P2.13 and LED - P2.13

****/

#include<LPC17xx.h>

void EINT3_IRQHandler(void);

unsigned char int3_flag=0;

int main(void)

{
 unsigned char flag=0;

 SystemInit();
 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL4 |= 0x04000000; //P2.13 as EINT3

 LPC_PINCON->PINSEL4 &= 0xFCFFFFFF; //P2.12 GPIO for LED

 LPC_GPIO2->FIODIR = 0x00001000; //P2.12 is assigned
output

 LPC_GPIO2->FIOSET = 0x00001000; //Initiall LED is kept
on

 LPC_SC->EXTINT = 0x00000008; //writing 1 cleares the
interrupt, get set if there is interrupt

 LPC_SC->EXTMODE = 0x00000008; //EINT3 is initiated as
edge senitive, 0 for level sensitive

 LPC_SC->EXTPOLAR = 0x00000000; //EINT3 is falling
edge sensitive, 1 for rising edge
 //above

registers, bit0-EINT0, bit1-EINT1, bit2-EINT2,bit3-EINT3
 NVIC_EnableIRQ(EINT3_IRQn); //core_cm3.h

 while(1)

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

73

 {

 while(int3_flag == 0x00); //wait till interrupt
 int3_flag = 0x00;

 if(flag == 0x00) //when flag is '0' off
the LED

 {
 LPC_GPIO2->FIOCLR = 0x00001000;

 flag = 0xFF;
 } //when
flag is FF on the LED

 else
 {

 LPC_GPIO2->FIOSET = 0x00001000;
 flag = 0x00;
 }

 }
}

void EINT3_IRQHandler(void)
{

 int3_flag = 0xff;
 LPC_SC->EXTINT = 0x00000008; //cleares the interrupt

}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

74

/**

 * EXP9 : SEVEN SEGMENT DISPLAY

 *---

 * Controller : LPC1768
 * Project : ALS-SDA-ARMCTXM3-06

 * Description :\\\\\\\\\\\\\\\DISPLAY ARE CONNECTED IN COMMON CATHODE
MODE\\\\\\\\\\\\\\\\\\\\\

 Port0 Connected to data lines of all 7 segement displays
 a

 f| g |b
 |----|

 e| |c
 ---- . dot

 d
 a = P0.04
 b = P0.05

 c = P0.06
 d = P0.07

 e = P0.08
 f = P0.09
 g = P0.10

 dot = P0.11

 Select lines for two 7 Segments
 DIS1 P0.19

 DIS2 P0.20
*/

#include <LPC17xx.h>

unsigned int delay, count=0, Switchcount=0,j;

unsigned int Disp[16]={0x000003f0, 0x00000060, 0x000005b0, 0x000004f0,

0x00000660,0x000006d0,
 0x000007d0, 0x00000070, 0x000007f0,

0x000006f0, 0x00000770,0x000007c0,
 0x00000390, 0x000005e0, 0x00000790,
0x00000710 };

#define ALLDISP 0x00180000 //Select all display

#define DATAPORT 0x00000ff0 //P0.16 to P0.23 : Data lines
connected to drive Seven Segments

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

75

int main (void)
{

 LPC_PINCON->PINSEL0 = 0x00000000;
 LPC_PINCON->PINSEL1 = 0x00000000;
 LPC_GPIO0->FIODIR = 0x00180ff0;

 while(1)

 {
 LPC_GPIO0->FIOSET |= ALLDISP;
 LPC_GPIO0->FIOCLR = 0x00000ff0; // clear the data lines to 7-

segment displays
 LPC_GPIO0->FIOSET = Disp[Switchcount]; // get the 7-segment

display value from the array

 for(j=0;j<3;j++)

 for(delay=0;delay<30000;delay++); // 1s delay

 Switchcount++;
 if(Switchcount == 0x10) // 0 to F has been displayed ? go
back to 0

 {
 Switchcount = 0;

 LPC_GPIO0->FIOCLR = 0x00180ff0;

 }

 }

}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

76

/***

 * EXP 10:Relay/buzzer/Led test

 *--
 * Controller : LPC1768

 * Description : Coil of the relay is pulled up at one side and other side is
controlled

 * by the controller via ULN2803 an inverting buffer. When Switch SW4 is Pressed
,high is sent
 * from the controller for Relay, current flows through the coil. LED gets on and

 * CN5 pin 1 and 2 gets short as well and low is sent from the controller then Buzzer
will ON

***/

#include <LPC17xx.H>

unsigned int count=0;
int main(void)

{
 unsigned int i;
 SystemInit();

 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL1 &= 0xFFF0FFFF; //P0.25 GPIO
 LPC_GPIO0->FIODIR |= 0x03000000; //P0.25 output
 while(1)

 {
 if(!(LPC_GPIO2->FIOPIN & 0x00000800))

 {
 for(i=0;i<10;i++)
 {

 LPC_GPIO0->FIOSET = 0x03000000; //relay on
 for(i=0;i<10000;i++);

 }

 }
 else

 {
 LPC_GPIO0->FIOCLR = 0x03000000; //relay off

 for(i=0;i<100000;i++);
 }
 } //end int main(void)

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

77

/***

 * SPI.c for testing SPI

 *---
 * Controller : LPC1768
 * Its a generalr SPI init and ISR code to be used at necessary points by including

 * SPI.h file. SSEL of SPI is not considered for initialisation. Its user option to
 * select any port line as Ss line. Other than that port lines used are - P0.15 - SCK,

 * MISO - P0.17, MOSI - P0.18

**************/

#include <LPC17xx.h>
#include "SPI.h"

unsigned char spi_flag = 0, temp=0;

void SPI_Init(void)

{
// LPC_SC->PCONP |= (1<<8); //Enable the peripheral SPI

 LPC_PINCON->PINSEL0 |= 0xC0000000; //P0.15 as SCK
 LPC_PINCON->PINSEL1 |= 0x0000003C; //select MISO-P0.17,MOSI-P0.18

 LPC_SPI->SPCCR = 0x1E; // SPI CLOCK SELECTED AS 100KHZ
 LPC_SPI->SPCR = 0xA0; //8 bit data, actve high clk, master SPI mode,SPI Int

enable
 // Master mode and SCK line is active high
 LPC_SPI->SPINT = 0x01; //clear the interrupt flag

 NVIC_EnableIRQ(SPI_IRQn);
}

void SPI_IRQHandler(void)
{

 spi_flag = 1;
 temp = LPC_SPI->SPSR; // To clear SPIF bit we have to read status register.

 temp = LPC_SPI->SPDR; // Then read the data register(optional)
 LPC_SPI->SPINT = 0x01; // To clear the SPI interrupt

}

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

78

/***
 * EXP7 :PWM Test

 * --
 * Controller : LPC1768

 * Description : PWM 1.2 is used. Match register 0 is used for count purpose.
PWM 1

 * match register 2 is increamented or decreamented at each interrupted.
 * Port line P3.25.
**/

#include <LPC17xx.H>

void pwm_init(void);
void PWM1_IRQHandler(void);

unsigned long int i;
unsigned char flag,flag1;

int main(void)
{

 SystemInit();
 SystemCoreClockUpdate();

 pwm_init();

 while(1)

 {
 for(i=0;i<=1000;i++); // delay

 }//end of while
}//end of main

void pwm_init(void)
{

 LPC_SC->PCONP |= (1<<6); //PWM1 is powered
 LPC_PINCON->PINSEL7 |= 0x000C0000; //pwm1.2 is selected for the pin

P3.25

 LPC_PWM1->PR = 0x00000000; //Count frequency : Fpclk

 LPC_PWM1->PCR = 0x00000400; //select PWM2 single edge
 LPC_PWM1->MCR = 0x00000003; //Reset and interrupt on PWMMR0

 LPC_PWM1->MR0 = 30000; //setup match register 0 count
 LPC_PWM1->MR2 = 0x00000100; //setup match register MR1
 LPC_PWM1->LER = 0x000000FF; //enable shadow copy register

 LPC_PWM1->TCR = 0x00000002; //RESET COUNTER AND PRESCALER
 LPC_PWM1->TCR = 0x00000009; //enable PWM and counter

 NVIC_EnableIRQ(PWM1_IRQn);

Embedded Controller Lab [17ECL67]

Dept.of ECE VSM SRKIT NIPANI

79

 return;

}

void PWM1_IRQHandler(void)
{
 LPC_PWM1->IR = 0xff; //clear the interrupts

 if(flag == 0x00)

 {
 LPC_PWM1->MR2 += 100;
 LPC_PWM1->LER = 0x000000FF;

 if(LPC_PWM1->MR2 >= 27000)

 {
 flag1 = 0xff;
 flag = 0xff;

 LPC_PWM1->LER = 0x000000fF;
 }

 }
 else if(flag1 == 0xff)
 {

 LPC_PWM1->MR2 -= 100;
 LPC_PWM1->LER = 0x000000fF;

 if(LPC_PWM1->MR2 <= 0x500)
 {

 flag = 0x00;
 flag1 = 0x00;

 LPC_PWM1->LER = 0X000000fF;
 }
 }

}

