
 

DEPARTMENT OF ECE                                                                                                      1 
 

 

       

VSM’s 

Somashekhar R Kothiwale Institute of 

Technology, Nipani-591237 

 

 
 

 

 

Department of Electronics & 

Communication Engg 

 VLSI LAB 

15ECL77 

by 

Prof. chetan alatagi 

 

 



 

DEPARTMENT OF ECE                                                                                                      2 
 

 

                                                                                               EXPT.NO.1 
 
TITLE : Write Verilog Code for the inverter circuit and their Test Bench for verification, observe 

the waveform and synthesize the code with technological library with given Constraints. Do the 

initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 

THEORY : The NOT gate or an inverter is an electronic circuit that produces an inverted version 

of the input at its output. It is also known as an inverter. If the input variable is A, the inverted 

output is known as NOT A. This is also shown as A', or A with a bar over the top, as shown at 

the outputs. The diagrams below show two ways that the NAND logic gate can be configured to 

produce a NOT gate. It can also be done using NOR logic gates in the same way. 

     Symbol      Truth Table 

 

 

 

 

Verilog Code For Inverter: 

module inv(a,b); 
input a; 
output b; 
assign b = ~(a); 
endmodule 
 
 
Test Bench: 
 
module inv_test; 
 reg a; 
 wire b; 
 inv uut ( 
  .a(a),  
  .b(b) 
 ); 
 initial begin 
 a = 0; #100; 
 a = 1; #100; 
 a = 0; #100; 

NOT Gate 

INPUT OUTPUT 

A A’ 

0 1 

1 0 



 

DEPARTMENT OF ECE                                                                                                      3 
 

 

 a = 1; #100; 
 end 
endmodule 
 

RESULT: Verilog code for the inverter circuit and its test bench for verification is written, the 

waveform is observed and the code is synthesized with the technological library and is verified. 

                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      4 
 

 

EXPT.NO.2 
 
TITLE: Write Verilog Code for the buffer circuit and their Test Bench for verification, observe the 

waveform and synthesize the code with technological library with given Constraints. Do the 

initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY: A special logic gate called a buffer is manufactured to perform the same function as 

two inverters. Its symbol is simply a triangle, with no inverting “bubble” on the output terminal. 

Buffer gates merely serve the purpose of signal amplification: taking a “weak” signal source that 

isn’t capable of sourcing or sinking much current, and boosting the current capacity of the signal 

so as to be able to drive a load. 

  Symbol      Truth Table 

 

   

Verilog Code For Buffer 

module buffer (a,b); 

input a; 

output b; 

assign b = (a); 

endmodule 

 

Test Bench: 
module buffer_test; 

  reg a; 

  wire b; 

  buffer uut ( 

  .a(a),  

  .b(b) 

  ); 

 

 initial begin 

 a = 0; #100; 

 a = 1; #100; 

 a = 0; #100; 

 a = 1; #100; 

end 

endmodule 

BUFFER 

INPUT OUTPUT 

0 0 

1 1 



 

DEPARTMENT OF ECE                                                                                                      5 
 

 

 
RESULT: Verilog code for the buffer circuit and its test bench for verification is written, the 
waveform is observed and the code is synthesized with the technological library and is verified. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      6 
 

 

EXPT.NO.3 
 
TITLE : Write Verilog Code for the transmission circuit and their Test Bench for verification, 

observe the waveform and synthesize the code with technological library with given Constraints. 

Do the initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY: A transmission gate, or analog switch, is defined as an electronic element that will 

selectively block or pass a signal level from the input to the output. Basic Operation This solid-

state switch is comprised of a pMOS transistor and nMOS transistor. The control gates are 

biased in a complementary manner so that both transistors are either on or off. When the 

voltage on node A is a Logic 1, the complementary Logic 0 is applied to node active-low A, 

allowing both transistors to conduct and pass the signal at IN to OUT. When the voltage on 

node active-low A is a Logic 0, the complementary Logic 1 is applied to node A, turning both 

transistors off and forcing a high-impedance condition on both the IN and OUT nodes. This 

high-impedance condition represents the third "state" (high, low, or high-Z) that the channel may 

reflect downstream. The schematic diagram (Figure 1) includes the arbitrary labels for IN and 

OUT, as the circuit will operate in an identical manner if those labels were reversed. This design 

provides true bidirectional connectivity without degradation of the input signal. Figure 1. 

Schematic representation of a transmission gate. 

              Symbol     Truth Table 

  

 

 

3. Verilog Code For Transmission 

module trans(a,b,an); 

input a,en; 

output b; 

A IN OUT 

H H H 

H L L 

L X(don’t 

care) 

Z(high 

impedance) 



 

DEPARTMENT OF ECE                                                                                                      7 
 

 

reg b; 

always @(a,en) 

begin 

if(en == a’b1) 

b=a; 

else 

b=1’bz; 

end 

endmodule 

 

 

Test Bench: 
module trans_test; 
  reg a; 
  reg en; 
  wire b; 
 trans uut ( 
  .a(a),  
  .b(b),  
  .en(en) 
  ); 
 
 initial begin 
   
  en = 1;   a=1 ; #100; 
  en = 1;   a=0 ; #100; 
  en = 0;   a=1 ; #100; 
  en = 0;   a=1 ; #100; 
   end 
endmodule 
 
RESULT: Verilog code for the transmission gate circuit and its test bench for verification is 
written, the waveform is observed and the code is synthesized with the technological library and 
is verified 
 
 
 

 

 

 

 

          

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      8 
 

 

 EXPT.NO.4 
 
TITLE : Write Verilog Code for the Basic/Universal gates and their Test Bench for verification, 

observe the waveform and synthesize the code with technological library with given Constraints. 

Do the initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY: Digital systems are said to be constructed by using logic gates. These gates are the 

AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described 

below with the aid of truth tables.  

  Symbol     Truth Table 

  

 

 The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are 

high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is 

sometimes omitted i.e. AB 

         Symbol      Truth Table 

 

 

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are 

high. A plus (+) is used to show the OR operation. 

  Symbol    Truth Table 

 

INPUT OUTPUT 

A B AB 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

INPUT OUTPUT 

A  B AB 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

INPUT OUTPUT 

A A’ 

0 1 

1 0 



 

DEPARTMENT OF ECE                                                                                                      9 
 

 

 

 The NOT gate is an electronic circuit that produces an inverted version of the input at its 

output. It is also known as an inverter. If the input variable is A, the inverted output is known as 

NOT A. This is also shown as A', or A with a bar over the top, as shown at the outputs. The 

diagrams below show two ways that the NAND logic gate can be configured to produce a NOT 

gate. It can also be done using NOR logic gates in the same way. 

  Symbol     Truth Table 

 

 

 

 The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of 

its two inputs are high. An encircled plus sign ( ) is used to show the EOR operation. 

  Symbol     Truth Table 

 

 

 The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low 

output if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small 

circle on the output. The small circle represents inversion. 

  Symbol    Truth Table 

  

                     

  

INPUT OUTPUT 

A B A XOR B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

INPUT OUTPUT 

A B A XOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

INPUT OUTPUT 

A B A XOR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



 

DEPARTMENT OF ECE                                                                                                      10 
 

 

 This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The 

outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with 

a small circle on the output. The small circle represents inversion. 

  Symbol    Truth Table 

 

 

  

 This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The 

outputs of all NOR gates are low if any of the inputs are high. The symbol is an OR gate with a 

small circle on the output. The small circle represents inversion. 

Verilog Code For Universal Gates 

module uni(a,b,z1,z2,z3,z4,z5,z6); 

input a,b; 

output z1,z2,z3,z4,z5,z6; 

assign z1 = a&b; 

assign z2 = a | b; 

assign z3 = ~(a&b); 

assign z4 = ~(a | b); 

assign z5 = a ^ b; 

assign z6 = ~(a ^ b); 

endmodule 

 

Test Bench: 
module uni_test; 
 reg a; reg b; 
 wire z1; wire z2; wire z3; 
 wire z4; wire z5; wire z6; 
 uni uut ( 
  .a(a), .b(b),  
  .z1(z1), .z2(z2),.z3(z3),  
  .z4(z4), .z5(z5),.z6(z6) 
  ); 
 
 initial begin 
  a = 0;b = 0;#100; 
  a = 0;b = 1;#100; 
  a = 1;b = 0;#100; 
  a = 1;b = 1;#100; 
    end    

INPUT OUTPUT 

A B A XOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 0 



 

DEPARTMENT OF ECE                                                                                                      11 
 

 

endmodule 
 
RESULT: Verilog code for the basic/universalgates circuit and its test bench for verification is 
written, the waveform is observed and the code is synthesized with the technological library and 
is verified. 

                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      12 
 

 

EXPT.NO.5 a 
 
TITLE : Write Verilog Code for the SR Flip Flop and their Test Bench for verification, observe 

the waveform and synthesize the code with technological library with given Constraints. Do the 

initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY: It can be seen that when both inputs S = “1” and R = “1” the outputs Q and Q can be 

at either logic level “1” or “0”, depending upon the state of the inputs S or R BEFORE this input 

condition existed. Therefore the condition of S = R = “1” does not change the state of the 

outputs Q and Q. VLSI Lab However, the input state of S = “0” and R = “0” is an undesirable or 

invalid condition and must be avoided. The condition of S = R = “0” causes both outputs Q and 

Q to be HIGH together at logic level “1” when we would normally want Q to be the inverse of Q. 

The result is that the flip-flop looses control of Q and Q, and if the two inputs are now switched 

“HIGH” again after this condition to logic “1”, the flip-flop becomes unstable and switches to an 

unknown data state based upon the unbalance as shown in the following switching diagram. 

 
Truth Table 

Input Output Description 

S R Q Q 

0 0 0 0 Memory no 
change 0 0 0 1 

0 1 1 0 Reset 

0 1 0 0 

1 0 0 1 Set 

1 0 1 1 

1 1 0 Z Invalid 
Condition 1 1 1 Z 

 

 

Verilog Code For SR Flip-Flop 

 

module srff( sr, reset, clk,q, qbar ); 

input [0:1]sr ; 

input reset, clk ; 



 

DEPARTMENT OF ECE                                                                                                      13 
 

 

output q, qbar ; 

reg q, qbar ; 

always @( sr , reset, posedge clk ) 

begin 

if ( reset == 0 ) 

begin 

q = 1'b0; 

qbar=1'b1; 

end 

else 

begin 

case(sr) 

2'b00:begin q=q;qbar=qbar;end 

2'b01:begin q=1'b0;qbar=1'b1;end 

2'b10:begin q=1'b1;qbar=1'b0;end 

2'b11:begin q=1'bz;qbar=1'bz;end 

endcase 

end 

end 

endmodule 

 

Test Bench: 

module srff_test; 

reg [0:1] sr;reg reset; reg clk; 

wire q; wire qbar; 

srff uut (.sr(sr), .reset(reset), .clk(clk),  

  .q(q),  .qbar(qbar) ); 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

 initial begin 

 reset=0; #100; 

 reset=1; 

 sr = 00;#100; 

 sr = 01;#100; 

 sr = 10;#100; 

 sr = 11;#100; 

 end 

endmodule 

RESULT: Verilog code for the SR Flip Flop circuit and its test bench for verification is written, 

the waveform is observed and the code is synthesized with the technological library and is 

verified 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      14 
 

 

EXPT.NO.5 b 
 
TITLE : Write Verilog Code for the D Flip Flop and their Test Bench for verification, observe the 

waveform and synthesize the code with technological library with given Constraints. Do the 

initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY:  In electronics, a flip-flop or latch is a circuit that has two stable states and can be 

used to store state information. A flip-flop is a bistable multivibrator. The circuit can be made to 

change state by signals applied to one or more control inputs and will have one or two outputs. 

It is the basic storage element in sequential logic. Flip-flops and latches are fundamental 

building blocks of digital electronics systems used in computers, communications, and many 

other types of systems. Flip-flops and latches are used as data storage elements. A flip-flop 

stores a single bit (binary digit) of data; one of its two states represents a "one" and the other 

represents a "zero". Such data storage can be used for storage of state, and such a circuit is 

described as sequential logic. D flip-flop The D flip-flop is widely used. It is also known as a 

"data" or "delay" flip-flop. The D flip-flop captures the value of the D-input at a definite portion of 

the clock cycle (such as the rising edge of the clock). That captured value becomes the Q 

output. At other times, the output Q does not change. The D flip-flop can be viewed as a 

memory cell, a zero-order hold, or a delay line. D flip-flop symbol 

 

 

 

 

Verilog Code For D Flip-Flop 

 

module dff( d, reset, clk,q, qbar ); 

input d ; 

input reset, clk ; 

output q, qbar ; 

reg q, qbar ; 



 

DEPARTMENT OF ECE                                                                                                      15 
 

 

always @( reset, posedge clk ) 

begin 

if ( reset == 0 ) 

begin 

q = 1’b0; 

qbar=1’b1; 

end 

else 

begin 

q = 1’b0; 

qbar = 1’b1; 

end 

end 

endmodule 

 

Test Bench: 

 

module dff_test; 

 reg d; reg reset; reg clk; 

 wire q; wire qbar; 

 dff uut (.d(d), .reset(reset),.clk(clk),  

  .q(q), .qbar(qbar) ); 

 

initial 

 clk =1'b0; 

 always #10 clk=~clk; 

  

 initial begin 

 reset=0; #100; 

 reset=1; 

 d=1'b0; #100; 

 d=1'b1; #100; 

 end 

endmodule 

 

RESULT: Verilog code for the D Flip Flop circuit and its test bench for verification is written, the 

waveform is observed and the code is synthesized with the technological library and is verified. 

 

 
 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      16 
 

 

EXPT.NO.5 c 
 
TITLE : Write Verilog Code for the SR Flip Flop and their Test Bench for verification, observe 

the waveform and synthesize the code with technological library with given Constraints. Do the 

initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY: Then the JK flip-flop is basically an SR flip flop with feedback which enables only one 

of its two input terminals, either SET or RESET to be active at any one time thereby eliminating 

the invalid condition seen previously in the SR flip flop circuit. Also when both the J and the K 

inputs are at logic level “1” at the same time, and the clock input is pulsed either “HIGH”, the 

circuit will “toggle” from its SET state to a RESET state, or visa-versa. This results in the JK flip 

flop acting more like a T-type toggle flip-flop when both terminals are “HIGH”. Although this 

circuit is an improvement on the clocked SR flip-flop it still suffers from timing problems called 

“race” if the output Q changes state before the timing pulse of the clock input has time to go 

“OFF”. To avoid this the timing pulse period ( T ) must be kept as short as possible (high 

frequency). As this is sometimes not possible with modern TTL IC’s the much improved 

MasterSlave JK Flip-flop was developed. 

 
 

Truth Table:  

Input Output Description 

J K Q Q 

0 0 0 0 Memory no 
change 0 0 0 1 

0 1 1 0 Reset 

0 1 0 0 

1 0 0 1 Set 

1 0 1 1 

1 1 0 1 Toggle 

1 1 1 0 



 

DEPARTMENT OF ECE                                                                                                      17 
 

 

 

Verilog Code For JK Flip-Flop 

 

module jkff( jk, reset, clk,q, qbar ); 

input [0:1]jk ; 

input reset, clk ; 

output q, qbar ; 

reg q, qbar ; 

always @( jk , reset, posedge clk ) 

begin 

if ( reset == 0 ) 

begin 

q = 1'b0; 

qbar=1'b1; 

end 

else 

begin 

case(jk) 

2'b00:begin q=q;qbar=qbar;end 

2'b01:begin q=1'b0;qbar=1'b1;end 

2'b10:begin q=1'b1;qbar=1'b0;end 

2'b11:begin q=~q;qbar=~qbar;end 

endcase 

end 

end 

endmodule 

 

Test Bench : 

module jkff_test; 

 reg [0:1] jk;reg reset;reg clk; 

 wire q;wire qbar; 

 jkff uut (.jk(jk),.reset(reset),.clk(clk),  

  .q(q), .qbar(qbar)); 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

 initial begin 

 reset=0; #100; 

 reset=1; 

 jk=00; #100; 

 jk=01; #100; 

 jk=10; #100; 

 jk=11; #100; 

 end 

endmodule 

 



 

DEPARTMENT OF ECE                                                                                                      18 
 

 

RESULT: Verilog code for the JK Flip Flop circuit and its test bench for verification is written, the 

waveform is observed and the code is synthesized with the technological library and is verified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      19 
 

 

EXPT.NO.5 d 
 
TITLE : Write Verilog Code for the SR Flip Flop and their Test Bench for verification, observe 

the waveform and synthesize the code with technological library with given Constraints. Do the 

initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY:  When T is held high, the toggle flip-flop divides the clock frequency by two; that is, if 

clock frequency is 4 MHz, the output frequency obtained from the flip-flop will be 2 MHz. This 

"divide by" feature has application in various types of digital counters. A T flip-flop can also be 

built using a JK flip-flop (J & K pins are connected together and act as T) or a D flip-flop (T input 

XOR Qprevious drives the D input). 

           Symbol     Truth Table 

             
 
 

Verilog Code For T Flip-Flop 

 

module tff( t, reset, clk,q, qbar ); 

input t ; 

input reset, clk ; 

output q, qbar ; 

reg q, qbar ; 

always @( t , reset, posedge clk ) 

begin 

if ( reset == 0 ) 

begin 

q = 1'b0; 

qbar=1'b1; 

end 

else 

begin 

case(t) 

1'b0: begin q=q; qbar=qbar; end 

1'b1: begin q=qbar; qbar=~qbar; end 

endcase 

end 

Input Output Description 

T Q Q  

0 0 0 Memory no 
change 0 1 1 

1 0 1 Toggle 

1 1 0 



 

DEPARTMENT OF ECE                                                                                                      20 
 

 

end 

endmodule 

 

Test Bench: 

 

module tff_test; 

 reg t;reg reset;reg clk; 

 wire q;wire qbar; 

 tff uut (.t(t),.reset(reset),.clk(clk),  

  .q(q),.qbar(qbar)); 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

  

 initial begin 

 reset=0; #100; 

 reset=1; 

 t=1'b0; #100; 

 t=1'b1; #100; 

 end 

endmodule 

 

RESULT: Verilog code for the T Flip Flop circuit and its test bench for verification is written, the 

waveform is observed and the code is synthesized with the technological library and is verified. 

 
 
 

                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      21 
 

 

   EXPT.NO.6 a  
 
TITLE : Write Verilog Code for the Serial adder circuit and their Test Bench for verification, 

observe the waveform and synthesize the code with technological library with given Constraints. 

Do the initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY: The serial binary adder or bit-serial adder is a digital circuit that performs binary 

 addition bit by bit. The serial full adder has three single-bit inputs for the numbers to be added 

and the carry in. There are two single-bit outputs for the sum and carry out. The carry-in signal 

is the previously calculated carry-out signal. The addition is performed by adding each bit, 

lowest to highest, one per clock cycle. Serial binary addition is done by a flip-flop and a full 

adder. The flip-flop takes the carry-out signal on each clock cycle and provides its value as the 

carry-in signal on the next clock cycle. After all of the bits of the input operands have arrived, all 

of the bits of the sum have come out of the sum output. 

 

Verilog Code For Serial Adder 

 

module serial_adder(a,b,sum,cout); 

input [3:0] a,b; 

output cout; 

output [3:0] sum; 

reg [3:0] sum; 

reg cout; 

reg [4:0] carry; 

integer i; 

always @(a,b) 

begin 

carry[0]=0; 

for(i=0;i<=3;i=i+1) 

begin 

sum[i] = a[i] ^ b[i] ^ carry[i]; 

carry [i+1] = ( a[i] & b[i] ) | (b[i] & carry[i]) | (carry[i] & a[i] ) ; 

end 

cout = carry[4]; 

end 

endmodule 

 

Test Bench: 

 

module serial_adder_test; 

 reg [3:0] a;reg [3:0] b; 

https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Binary_adder
https://en.wikipedia.org/wiki/Full_adder
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Full_adder
https://en.wikipedia.org/wiki/Full_adder
https://en.wikipedia.org/wiki/Full_adder


 

DEPARTMENT OF ECE                                                                                                      22 
 

 

 wire [3:0] sum;wire cout; 

 serial_adder uut (.a(a),.b(b),  

  .sum(sum),.cout(cout) ); 

 initial begin 

 a = 0101;b = 1101; #100; 

 a = 0111;b = 1001; #100; 

 a = 1011;b = 0001; #100; 

 a = 0001;b = 1100; #100; 

 end 

       

endmodule 

 

RESULT: Verilog code for the serial adder circuit and its test bench for verification is written, the 

waveform is observed and the code is synthesized with the technological library and is verified. 

 
 

 

 

 

 

                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      23 
 

 

EXPT.NO.6 b  
 
TITLE : Write Verilog Code for the parallel adder circuit and their Test Bench for verification, 

observe the waveform and synthesize the code with technological library with given Constraints. 

Do the initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY:  Addition is a fundamental operation for any digital system, digital signal processing 

or control system. A fast and accurate operation of a digital system is greatly influenced by the 

performance of the resident adders. Adders are also very important component in digital 

systems because of their extensive use in other basic digital operations such as subtraction, 

multiplication and division Parallel adder is a combinatorial circuit (not clocked, does not have 

any memory and feedback) adding every bit position of the operands in the same time. Thus it 

is requiring number of bit-adders(full adders + 1 half adder) equal to the number of bits to be 

added. The Parallel adder is constructed by cascading full adders (FA) blocks in series. One full 

adder is responsible for the addition of two binary digits at any stage of the ripple carry. The 

carryout of one stage is fed directly to the carry-in of the next stage. 

 
 

 

 

6. b) Verilog Code For Parallel Adder 

 

module parallel ( a, b, cin, sum, cout ); 

input [3:0] a, b ; 

input cin ;  

output [3:0] sum; 

output cout; 

wire [3:0] c; 

fa stage0 ( a[0], b[0], cin, sum[0], c[0] ) ; 

fa stage1 ( a[1], b[1], c[0], sum[1], c[1] ) ; 



 

DEPARTMENT OF ECE                                                                                                      24 
 

 

fa stage2 ( a[2], b[2], c[1], sum[2], c[2] ) ; 

fa stage3 ( a[3], b[3], c[2], sum[3], c[3] ) ; 

assign cout = c[3] ; 

endmodule 

 

Component Code 

 

module fa( a, b, cin, s, cout ) ; 

input a, b, cin; 

output s, cout; 

assign s = a ^ b ^ cin ; 

assign cout = ( a & b ) | ( b & cin ) | ( cin & a ) ; 

endmodule 

 

Test Bench: 

 

module parallel_test; 

 reg [3:0] a;reg [3:0] b;reg cin; 

 wire [3:0] sum;wire cout; 

 parallel uut ( 

  .a(a),.b(b),.cin(cin),  

  .sum(sum),.cout(cout) 

   ); 

 initial begin 

 a = 0101;b = 1101; cin=0;#100; 

 a = 0111;b = 1001; cin=0;#100; 

 a = 1011;b = 0001; cin=0;#100; 

 a = 0001;b = 1100; cin=0;#100; 

 end 

endmodule 

 

RESULT: Verilog code for the parallel adder circuit and its test bench for verification is written, 

the waveform is observed and the code is synthesized with the technological library and is 

verified. 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      25 
 

 

EXPT.NO.7 a  
 
TITLE : Write Verilog Code for the synchronous counter circuit and their Test Bench for 

verification, observe the waveform and synthesize the code with technological library with given 

Constraints. Do the initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 
THEORY:  A synchronous counter, in contrast to an asynchronous counter, is one whose output 

bits change state simultaneously, with no ripple. The only way we can build such a counter 

circuit from J-K flip-flops is to connect all the clock inputs together, so that each and every flip-

flop receives the exact same clock pulse at the exact same time. The figure shows a four-bit 

synchronous “up” counter. Each of the higher-order flip-flops are made ready to toggle (both J 

and K inputs “high”) if the Q outputs of all previous flip-flops are “high.” Otherwise, the J and K 

inputs for that flip-flop will both be “low,” placing it into the “latch” mode where it will maintain its 

present output state at the next clock pulse. Since the first (LSB) flip-flop needs to toggle at 

every clock pulse, its J and K inputs are connected to Vcc or Vdd, where they will be “high” all 

the time. The next flip-flop need only “recognize” that the first flip-flop’s Q output is high to be 

made ready to toggle, so no AND gate is needed. However, the remaining flip-flops should be 

made ready to toggle only when all lower-order output bits are “high,” thus the need for AND 

gates. 

 

 
 

I) Verilog Code For Synchronous Down Counter 

module sync ( clk, q, qbar ) ; 

input clk ; 

output [3:0] q ; 

output [3:0] qbar ; 



 

DEPARTMENT OF ECE                                                                                                      26 
 

 

wire [1:0] s; 

supply1 vdd ;  

jkff c0 ( vdd, vdd, clk , q[0], qbar [0] ) ; 

jkff c1 (qbar [0], qbar [0], clk , q[1], qbar [1] ) ; 

assign s[0]= qbar[0] & qbar[1]; 

jkff c2 (s[0],s[0], clk ,q[2], qbar [2]  ) ; 

assign s[1]= qbar[0] & qbar[1] & qbar[2] ; 

jkff c3 (s[1], s[1] , clk , q[3], qbar [3] ) ; 

endmodule 

 

 

Component Code 

  module jkff ( j, k ,clk, qx, qxbar ) ; 

input clk , j , k ; 

output qx, qxbar ; 

reg qx, qxbar ; 

initial  

begin 

qx = 1’b0 ; 

qxbar = 1’b1 ; 

end 

always @ ( posedge clk ) 

begin  

qx = ( j & ( ~ qx ) ) | ( ( ~ k ) & qx ) ; 

qxbar = ~ qx ;  

end 

endmodule 

 

Test Bench : 

module sync_test; 

 reg clk; 

 wire [3:0] q;wire [3:0] qbar; 

 async uut (.clk(clk),  

  .q(q),.qbar(qbar) ); 

 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

 endmodule 

 

II) Verilog Code For Synchronous Down Counter 

 

module sync ( clk, q, qbar ) ; 

input clk ; 

output [3:0] q ; 

output [3:0] qbar ; 



 

DEPARTMENT OF ECE                                                                                                      27 
 

 

wire [1:0] s; 

supply1 vdd ;  

jkff c0 ( vdd, vdd, clk , q[0], qbar [0] ) ; 

jkff c1 (q [0], q [0], clk , q[1], qbar [1] ) ; 

assign s[0]= q[0] & q[1]; 

jkff c2 (s[0],s[0], clk ,q[2], qbar [2]  ) ; 

assign s[1]= q[0] & q[1] & q[2] ; 

jkff c3 (s[1], s[1] , clk , q[3], qbar [3] ) ; 

endmodule 

 

Component Code 

  module jkff ( j, k ,clk, qx, qxbar ) ; 

input clk , j , k ; 

output qx, qxbar ; 

reg qx, qxbar ; 

initial  

begin 

qx = 1’b0 ; 

qxbar = 1’b1 ; 

end 

always @ ( posedge clk ) 

begin  

qx = ( j & ( ~ qx ) ) | ( ( ~ k ) & qx ) ; 

qxbar = ~ qx ;  

end 

endmodule 

 

Test Bench : 

module sync_test; 

 reg clk; 

 wire [3:0] q;wire [3:0] qbar; 

 async uut (.clk(clk),  

  .q(q),.qbar(qbar)); 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

 endmodule 

 

RESULT: Verilog code for the synchronous counter circuit and its test bench for verification is 

written, the waveform is observed and the code is synthesized with the technological library and 

is verified. 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      28 
 

 

EXPT.NO.7 b  
 
TITLE : Write Verilog Code for the asynchronous counter circuit and their Test Bench for 

verification, observe the waveform and synthesize the code with technological library with given 

Constraints. Do the initial timing verification with gate level simulation. 

 

TOOL REQUIRED: XILINX 10.2 

 

THEORY: Asynchronous counters are those whose output is free from the clock signal. 

Because the flip flops in asynchronous counters are supplied with different clock signals, there 

may be delay in producing output. The required number of logic gates to design asynchronous 

counters is very less. So they are simple in design. Another name for Asynchronous counters is 

“Ripple counters”. The number of flip flops used in a ripple counter is depends up on the number 

of states of counter (ex: Mod 4, Mod 2 etc). The number of output states of counter is called 

“Modulus” or “MOD” of the counter. The maximum number of states that a counter can have is 

2n where n represents the number of flip flops used in counter. For example, if we have 2 flip 

flops, the maximum number of outputs of the counter is 4 i.e. 22. So it is called as “MOD-4 

counter” or “Modulus 4 counter”. 

 I) Verilog Code For Asynchronous Down Counter 

module async ( clk, q, qbar ) ; 

input clk ; 

output [3:0] q ; 

output [3:0] qbar ; 

supply1 vdd ;  

jkff c0 ( vdd, vdd, clk , q[0], qbar [0] ) ; 

jkff c1 (vdd, vdd, q[0] , q[1], qbar [1] ) ; 

jkff c2 (vdd, vdd, q[1], q[2], qbar [2] ) ; 

jkff c3 (vdd, vdd, q[2], q[3], qbar [3] ) ; 

endmodule 

Component Code 

  module jkff ( j, k ,clk, qx, qxbar ) ; 

input clk , j , k ; 

output qx, qxbar ; 

reg qx, qxbar ; 

initial  

begin 

qx = 1’b0 ; 

qxbar = 1’b1 ; 

end 

always @ ( posedge clk ) 

begin  

qx = ( j & ( ~ qx ) ) | ( ( ~ k ) & qx ) ; 



 

DEPARTMENT OF ECE                                                                                                      29 
 

 

qxbar = ~ qx ;  

end 

endmodule 

 

Test Bench : 

module sync_test; 

 reg clk; 

 wire [3:0] q;wire [3:0] qbar; 

 async uut ( 

  .clk(clk),  

  .q(q),.qbar(qbar) 

 ); 

 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

 endmodule 

 

 

II)  Verilog Code For Asynchronous Up Counter 

module async ( clk, q, qbar ) ; 

input clk ; 

output [3:0] q ; 

output [3:0] qbar ; 

supply1 vdd ;  

jkff c0 ( vdd, vdd, clk , q[0], qbar [0] ) ; 

jkff c1 (vdd, vdd, qbar[0] , q[1], qbar [1] ) ; 

jkff c2 (vdd, vdd, qbar[1], q[2], qbar [2] ) ; 

jkff c3 (vdd, vdd, qbar[2], q[3], qbar [3] ) ; 

endmodule 

 

Component Code 

  module jkff ( j, k ,clk, qx, qxbar ) ; 

input clk , j , k ; 

output qx, qxbar ; 

reg qx, qxbar ; 

initial  

begin 

qx = 1’b0 ; 

qxbar = 1’b1 ; 

end 

always @ ( posedge clk ) 

begin  

qx = ( j & ( ~ qx ) ) | ( ( ~ k ) & qx ) ; 

qxbar = ~ qx ;  

end 



 

DEPARTMENT OF ECE                                                                                                      30 
 

 

endmodule 

 

Test Bench : 

module sync_test; 

 reg clk; 

 wire [3:0] q;wire [3:0] qbar; 

 async uut ( 

  .clk(clk),  

  .q(q),.qbar(qbar) 

 ); 

 

 initial 

 clk =1'b0; 

 always #10 clk=~clk; 

 endmodule 

 

RESULT: Verilog code for the asynchronous counter circuit and its test bench for verification is 

written, the waveform is observed and the code is synthesized with the technological library and 

is verified 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

DEPARTMENT OF ECE                                                                                                      31 
 

 

PART - B 
ANALOG DESIGN 

Steps of Execution for schematic :  

1. Start RedHat OS 

2. Click on vsmitvlsi 

3. Password: vlsilab 

4. Select network connection: system eth0 

5. Right click and select Open in Terminal 

6. Write cd enter,  source ams.cshrc enter, dmgr_ic enter 

7. Click on File --- New --- Project ----  

8. Project path: /home/vsmitvlsi/inverter 

9. Library: select: PDK---generic13 ----- enter OK  

10. Click on add standard library  --- click --- OK 

11. Right click on project--- new --- library ---- library name: inv --- OK 

12. Right click on library inv --- new --- Schematic ----  

13. Cell name  --- inv --- press OK 

14. After blank schematic window opens, Add instance 

15. Generic13/symbols – pmos,nmos,resistance,capacitance 

16. Genericlib --- vdd, vss, ground etc 

17. Source --- dc, ac, pulse voltage, current sources etc 

18. Draw Schematic Diagram with appropriate ports 

19. Click on save & check 

20. Add --- generic symbol --- Choose shape 

21. Customize pinlist --- press OK 

22. Save & check the generated symbol 

23. In the project navigator --- right click --- schematic (for test circuit) 

24. Select the schematic instance 

25. Draw the test circuit --- Save 

26. Enter Simulation mode 

27. New design configuration  

28. Name: eldo --- Press OK 

29. Choose Setup Environment 

30. Viewer --- select ----Satrt EZwave Automatically --- Press OK 

31. Setup simulation --- Analysis --- Transient (give appropriate values) 

32. Setup simulation --- Analysis --- DC (give appropriate values) 

33. Setup simulation --- Analysis --- AC (give appropriate values) 

34. Setup simulation --- libraries – Typical 

35. Setup simulation --- Includes --- unselect include_all 

36. Setup simulation – forces  --- from schematic  --- press ctrl & choose input output 

37. Setup simulation – output --- ( Choose inputs and outputs ) Add 

38. Save  --- Run 

 

 



 

DEPARTMENT OF ECE                                                                                                      32 
 

 

Steps of Execution for Layout:  

1. In the project navigator --- Select Schematic & in Project Hierarchy – right click --- 

new --- layout  

2. Choose OK to Launch Editor 

3. Setup – toolbar – SDL toolbar  

4. Pick and place component from SDL tollbar 

5. Pick and place ports from SDL toolbar 

6. Setup – windows – object editor – add device -- $gb_p – psub, nwell for nmos , 

pmos 

7. IRoute for connectivity using appropriate layers , add --- text on ports – M1 – OK 

8. Save the layout 

9. Tools  -- Calibre DRC – Run DRC 

10. Tools – Calibre LVS – Run LVS  

11. Tick Mark and Smileys indicates NO LVS Errors 

12. Tools – Calibre PEX – input – Browse  “ *.src.net “ –input – Netlist  

– enable export from schematic – Run PEX 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      33 
 

 

EXPT.NO.1  
 
TITLE : To simulate the schematic of the CMOS inverter, and then to perform the physical 

verification for the layout of the same. 

 

TOOL REQUIRED: Mentorgraphics 

 
THEORY:   The inverter is universally accepted as the most basic logic gate doing a Boolean 

operation on a single input variable. Fig.1 depicts the symbol, truth table and a general structure 

of a CMOS inverter. As shown, the simple structure consists of a combination of an pMOS 

transistor at the top and a nMOS transistor at the bottom. 

 CMOS is also sometimes referred to as complementary-symmetry metal–oxide–

semiconductor. The words "complementary-symmetry" refer to the fact that the typical digital 

design style with CMOS uses complementary and symmetrical pairs of p-type and n-type metal 

oxide semiconductor field effect transistors (MOSFETs) for logic functions. Two important 

characteristics of CMOS devices are high noise immunity and low static power consumption. 

Significant power is only drawn while the transistors in the CMOS device are switching between 

on and off states. Consequently, CMOS devices do not produce as much waste heat as other 

forms of logic, for example transistortransistor logic (TTL) or NMOS logic, which uses all n-

channel devices without p-channel devices. 

 
 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      34 
 

 

Inverter Schematic 

 

 

Inverter Symbol 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      35 
 

 

Inverter Test 

 

 

Inverter DCAnalysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      36 
 

 

Inverter Transient Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      37 
 

 

 Inverter Layout 

 

 

 

 

 

 

 

Inverter DRC 



 

DEPARTMENT OF ECE                                                                                                      38 
 

 

 

 

 

Inverter LVS 

 

 

Inverter PEX 



 

DEPARTMENT OF ECE                                                                                                      39 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

DEPARTMENT OF ECE                                                                                                      40 
 

 

EXPT.NO. 2 a 
 
TITLE : To simulate the schematic of the CMOS common aource amplifier, and then to perform 

the physical verification for the layout of the same. 

 

TOOL REQUIRED: Mentorgraphics 

 
THEORY: In electronics, a common-source amplifier is one of three basic single-stage field-

effect transistor (FET) amplifier topologies, typically used as a voltage or transconductance 

amplifier. The easiest way to tell if a FET is common source, common drain, orcommon gate is 

to examine where the signal enters and leaves. The remaining terminal is what is known as 

"common". In this example, the signal enters the gate, and exits the drain. The only terminal 

remaining is the source. This is a common-source FET circuit. The analogous bipolar junction 

transistor circuit is the common-emitter amplifier. The common-source (CS) amplifier may be 

viewed as a transconductance amplifier or as a voltage amplifier. (See classification of 

amplifiers). As a transconductance amplifier, the input voltage is seen as modulating the current 

going to the load. As a voltage amplifier, input voltage modulates the amount of current flowing 

through the FET, changing the voltage across the output resistance according to Ohm's law. 

However, the FET device's output resistance typically is not high enough for a reasonable 

transconductance amplifier (ideally infinite), nor low enough for a decent voltage amplifier 

(ideally zero). Another major drawback is the amplifier's limited high-frequency response. 

 
Common drain amplifier is a source follower or buffer amplifier circuit using a MOSFET. The 

output is simply equal to the input minus about 2.2V. The advantage of this circuit is that the 

MOSFET can provide current and power gain; the MOSFET draws no current from the input. It 

provides low output impedance to any circuit using the output of the follower, meaning that the 

output will not drop under load. Its output impedance is not as low as that of an emitter follower 



 

DEPARTMENT OF ECE                                                                                                      41 
 

 

using a bipolar transistor (as you can verify by connecting a resistor from the output to -15V), 

but it has the advantage that the input impedance is infinite.The MOSFET is in saturation, so the 

current across it is determined by the gatesource voltage. Since a current source keeps the 

current constant, the gate-source voltage is also constant. 

 

Common Source Schematic 

 

 

Common Source Symbol 

 



 

DEPARTMENT OF ECE                                                                                                      42 
 

 

Common Source Test 

 

 

Common Source DC Analysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      43 
 

 

Common Source Transient Analysis 

 

 

Common Source AC Analysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      44 
 

 

Common Source Layout 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      45 
 

 

Common Source DRC 

 

 

Common Source LVS 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      46 
 

 

 

Common Source PEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      47 
 

 

EXPT.NO.2 b 
 
TITLE : To simulate the schematic of the CMOS common drain amplifier, and then to perform 

the physical verification for the layout of the same. 

 

TOOL REQUIRED: Mentorgraphics 

 
THEORY: Common drain amplifier is a source follower or buffer amplifier circuit using a 

MOSFET. The output is simply equal to the input minus about 2.2V. The advantage of this 

circuit is that the MOSFET can provide current and power gain; the MOSFET draws no current 

from the input. It provides low output impedance to any circuit using the output of the follower, 

meaning that the output will not drop under load. Its output impedance is not as low as that of an 

emitter follower using a bipolar transistor (as you can verify by connecting a resistor from the 

output to -15V), but it has the advantage that the input impedance is infinite.The MOSFET is in 

saturation, so the current across it is determined by the gatesource voltage. Since a current 

source keeps the current constant, the gate-source voltage is also constant. 

 
 

Common Drain Schematic 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      48 
 

 

Common Drain Symbol 

 

 

 

Common Drain Test 

 

 



 

DEPARTMENT OF ECE                                                                                                      49 
 

 

Common Drain DC Analysis 

 

 

Common Drain Transient Analysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      50 
 

 

Common Drain Layout 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      51 
 

 

Common Drain DRC 

 

 

 

Common Drain LVS 

 

 



 

DEPARTMENT OF ECE                                                                                                      52 
 

 

Common Drain PEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      53 
 

 

EXPT.NO.2 c 
 
TITLE : To simulate the schematic of the CMOS differential amplifier, and then to perform the 

physical verification for the layout of the same. 

 

TOOL REQUIRED: Mentorgraphics 

 
THEORY:  The differential amplifier is probably the most widely used circuit building block in 

analog integrated circuits, principally op amps. We had a brief glimpse at one back in Chapter 3 

section 3.4.3 when we were discussing input bias current. The differential amplifier can be 

implemented with BJTs or MOSFETs. A differential amplifier multiplies the voltage difference 

between two inputs (Vin+ - Vin- ) by some constant factor Ad, the differential gain. It may have 

either one output or a pair of outputs where the signal of interest is the voltage difference 

between the two outputs. A differential amplifier also tends to reject the part of the input signals 

that are common to both inputs (Vin+ + Vin-)/2 . This is referred to as the common mode signal. 

 

Differential Amplifier Schematic 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      54 
 

 

Differential Amplifier Symbol 

 

 

 

Differential Amplifier Test 

 

 



 

DEPARTMENT OF ECE                                                                                                      55 
 

 

Differential Amplifier DC Analysis 

 

 

Differential Amplifier Transient Analysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      56 
 

 

Differential Amplifier AC Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      57 
 

 

EXPT.NO.3 
 
TITLE : To simulate the schematic of the CMOS op-amp and then to perform the physical 

verification for the layout of the same. 

 

TOOL REQUIRED: Mentorgraphics 

 
THEORY:  An operational amplifier (often op-amp or opamp) is a DC-coupled high-gain 

electronic voltage amplifier with a differential inputand, usually, a single-ended output.[1] In this 

configuration, an op-amp produces an output potential (relative to circuit ground) that is typically 

hundreds of thousands of times larger than the potential difference between its input terminals. 

Operational amplifiers had their origins in analog computers, where they were used to perform 

mathematical operations in many linear, non-linear and frequency-dependent circuits. The 

popularity of the op-amp as a building block in analog circuits is due to its versatility. Due 

tonegative feedback, the characteristics of an op-amp circuit, its gain, input and output 

impedance, bandwidth etc. are determined by external components and have little dependence 

on temperature coefficients or manufacturing variations in the op-amp itself. Op-amps are 

among the most widely used electronic devices today, being used in a vast array of consumer, 

industrial, and scientific devices. Many standard IC op-amps cost only a few cents in moderate 

production volume; however some integrated or hybrid operational amplifiers with special 

performance specifications may cost over $100 US in small quantities. Op-amps may be 

packaged as components, or used as elements of more complex integrated circuits. The op-

amp is one type of differential amplifier. The amplifier's differential inputs consist of a non-

inverting input (+) with voltage V+ and an inverting input (–) with voltage V−; ideally the op-amp 

amplifies only the difference in voltage between the two, which is called the differential input 

voltage.  

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      58 
 

 

OPAMP Schematic 

 

 

OPAMP Symbol 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      59 
 

 

OPAMP Test 

 

 

OPAMP DC Analysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      60 
 

 

OPAMP Transient Analysis 

 

 

OPAMP AC Analysis 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      61 
 

 

EXPT.NO.3 
 
TITLE : To simulate the schematic of the CMOS R - 2R ladder and then to perform the physical 

verification for the layout of the same. 

 

TOOL REQUIRED: Mentorgraphics 

 
THEORY:  The R-2R resistor ladder network directly converts a parallel digital symbol/word into 

an analog voltage. Each digital input (b0, b1, etc.) adds its own weighted contribution to the 

analog output. This network has some unique and interesting properties. 

 Easily scalable to any desired number of bits 

 Uses only two values of resistors which make for easy and accurate fabrication and 

integration 

 Output impedance is equal to R, regardless of the number of bits, simplifying filtering 

and further analog signal processing circuit design 

Analyzing the R-2R network brings back memories of the seemingly infinite variety of networks 

that you’re asked to solve during your undergraduate electrical engineering studies. The reality 

though, is that the analysis of this network and how it works is quite simple. By methodical 

application of Thevenin Equivalent circuits and Superposition, we can easily show how the R-2R 

circuit works. 

 

 

 

 

 

 

 

 

 

 

 



 

DEPARTMENT OF ECE                                                                                                      62 
 

 

 R2R Schematic 

 

 

R2R Symbol 

 

 



 

DEPARTMENT OF ECE                                                                                                      63 
 

 

R2R Test  

 

 

 

R2R Transient Analysis 

 

 

 


